

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE)

Year & Sem: II-B.Tech & I-Sem **Regulation: R15**

UNIT –I

- 1. a) Find the rank of the matrix $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$ by using Echelon form.

 b) Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 4 \\ 3 & 0 & 5 & 10 \end{bmatrix}$ into normal form. Find its rank. [5 M]
 - [5 M]
- 2. Find whether the following system of equations are consistent. If so solve them

$$x + 2y + 2z = 2$$
; $3x - 2y - z = 5$; $2x - 5y + 3z = -4$; $x + 4y + 6z = 0$. [10 M]

- 3. Determine whether the following equations will have a non-trivial solutions, if so solve them 4x + 2y + z + 3w = 0; 6x + 3y + 4z + 7w = 0; 2x + y + w = 0. [10 M]
- 4. Discuss for what values of λ and μ , the simultaneous equations x + y + z = 6x + 2y + 3z = 10; $x + 2y + \lambda = \mu$ have i) no solution ii) a unique solution iii) An infinite many solutions. [10 M]
- 5. Find the characteristic equation of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$. [10 M]
- 6. Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ find A^{-2} and A^{4} using Cayley Hamilton theorem. [10 M]
- 7. Reduce the quadratic form to the sum of squares form by orthogonal reduction. Find index, Nature and Signature of the quadratic form $2x^2 + 2y^2 + 2z^2 - 2yz - 2zx - 2xy$. [10 M]
- 8. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form by Orthogonal reduction. Find index, nature and signature of the quadratic form. [10 M]
- 9. a) If $A = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3+i & 4 \end{bmatrix}$ then prove A is Hermitian and iA is Skew-Hermitian.
 - b) Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is unitary matrix. [5 M]
- 10. a) Define rank of a matrix. [2 M]
 - b) Test for the consistency of x + y + z = 6; x y + 2z = 5; 3x + y + z = -8. [2 M]

c) Find the Eigen values of the matrix $\begin{vmatrix} -2 \\ 6 \end{vmatrix}$

[2 M]

d) Define Hermitian matrix and Skew- Hermitian matrix.

[2 M]

e) State Cayley Hamilton Theorem.

[2 M]

]

1

1

1

1

1

]

1

1

Prepared by: N.RAJAGOPAL REDDY

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : MATHEMATICS-III(15A54301)

Course & Branch: B.Tech(ECE)

Year & Sem: II-B. Tech & I-Sem

Regulation: R15

UNIT – I

- 1. If $A = \begin{bmatrix} b & a & c \end{bmatrix}$ is singular matrix then $a^3 + b^3 + c^3 = c^3$]
 - A) 3*abc*
- B) abc
- $C)(abc)^3$
- D) 1

- 2. A square matrix A is symmetric if
 - $A)A^TA = 0$
- B) $A^{T}A = 1$
- $C)A^T = -A$
- D) $A^T = A$

- 3. A square matrix A is skew-symmetric if
 - $A)A^TA = 0$
- B) $A^{T}A = 1$
- $C)A^T = -A$
- D) $A^T = A$
- 4. The diagonal elements of a skew-symmetric matrix are all
 - A) real
- B) imaginary
- C) zero
- D) one

- 5. A square matrix A is an orthogonal matrix if
 - $A) A^{-1}A = I$
- B) $A^T A = I$
- $C)A^T = -A$
- D) $A^T = A$

6. The rank of 3×3 non-singular matrix A is B) 0 A)2

D) 3

7. The rank of the singular matrix of order 3 is

 $A) \leq 3$ $B) \leq 2$

D) 3

- 8. The system of equations are consistent, if
 - C) $\rho(A) = \rho(AB)$

C)1

C)1

A) $\rho(A) < \rho(AB)$ B) $\rho(A) \neq \rho(AB)$

- D) None
- 9. The system of linear equations has infinite many solution, if A) r < nB) $r \neq n$ C) r = n
- D) None
- 10. The system of linear equations has unique solution, if

- C) r = n

- A) r < n
- B) $r \neq n$
- D) None

D) None

- 11. The system of linear equations has AX = 0 is A) Homogeneous
 - B) non homogeneous C)consistent

Mathematics-III

12.	The system of linear e	_		[]
13.	A) X < 0 The system of equation		C) $X = n$	D) X = 0]
	A) $\rho(A) < \rho(AB)$	B) $\rho(A) \neq \rho(AB)$	C) $\rho(A) = \rho(AB)$	D) None	
14.	The rank of a unit mat		C) #	[D) 5]
1	A)2	B) 4	C) 1	D) 3	1
15.	The rank of the singul			D) 3]
16	<i>'</i>	B) 2	C)1	D) 3	1
10.	The transpose of an or A) symmetric	rtnogonal matrix is B) unitary	C) orthogonal	D) Hermitian	J
17.	The maximum value of		,]
		B) 4	C) 5	D) 3	,
18.	If A is a symmetric ma	atrix then A^n (n is posit	ive integer) is]]
	, 3	B) unitary		D) Hermitian	
19.	The diagonal elements			D) None]
20	A) real The diagonal elements	B) <i>purly</i> imaginary s of a Hermitian matrix		D) None [1
20.	A) <i>purly</i> imaginary		C) zero	D) None	J
21.	A square matrix is said		,	[]
	$A)A^{\theta}A^{T} = A$		$C) A^{\theta} A = 0$	D) None	
22.	Inverse f a unitary ma		C) anthononal	[[]
23	The Eigen values of the	B) unitary		D) symmetric]
23.	•	B) 1,1,0	C) 1,1,1	D) 1, –1,1	J
24.	If one of the Eigen val	-	-	·]
	_	_		D) non – singular	J
25.	If $1, -1, 2$ be the Eigen	n value is of a square n	natrix A , then the trace	of A is []
	A)-2	B) 0	C) 3	D) 2	
26.	The characteristic equ	ation of the square ma	trix A is	[]
			C) $ A - \lambda I = 0$	$D) [A - \lambda I] = 0$	
27	The latent root of $\begin{bmatrix} a \\ 0 \end{bmatrix}$	$\begin{bmatrix} h & g \\ h & 0 \end{bmatrix}$ are		Г	1
21.		$\begin{bmatrix} b & 0 \\ 0 & c \end{bmatrix}$ are		l]
	A) a, 0, c	B)a, b, c	C) a, h, c	D) 0,0,0	
28.	If $D = P^{-1}AP$ then A		1	[]
	,	B) $P^{-1}AP$	$C)PDP^{-1}$	D) PD^2P^{-1}	
29.	The Eigen values of [$\begin{bmatrix} i \\ i \end{bmatrix}$ are		[]
	A) <i>i</i> , <i>i</i>	B)1, -1	$C)i_{i}-i$	D) -1, -1	
30	If a square matrix A sa	atisfies $A^T A = I$ then	the matrix is	Г]
50.	-	B) hermitian	C)unitary	D) orthogonal	J
31.	The symmetric matrix	associated with the qu	$x^2 + 3y^2$	- 8xy []
	A) $\begin{bmatrix} 1 & -4 \\ -4 & 3 \end{bmatrix}$	$B)\begin{bmatrix} 1 & -4 \\ 4 & -3 \end{bmatrix}$	$C)\begin{bmatrix} 1 & 4 \\ 4 & -3 \end{bmatrix}$	D) $\begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix}$	
32.	If A is Hermitian matr	- J-	14 —31	[]
		B)skew – hermitian	C)hermitian	D) None	ı
33	_	of the quadratic form		ſ	1

D) 0

	$A)\begin{bmatrix} a & -1 \\ -1 & h \end{bmatrix}$	$B)\begin{bmatrix} a & -h \\ -1 & h \end{bmatrix}$	C $\begin{bmatrix} a & -h \\ -h & h \end{bmatrix}$	D) $\begin{bmatrix} a & -1 \\ -h & h \end{bmatrix}$]	
34.	The Eigen values of A	are 0,1,2 then the nat	ture of the quadratic for	orm is	[]
	A) positive definite		B) positive semi def	inite		
	C)negative definite		D) indefinite			
35.	The Eigen values of A	are -1,-4,-4 then the i	ndex of the quadratic	form is	[]
	A) 1	B) 2	C) 3	D) 0		
36.	The Eigen values of ${\bf A}$	are 0,0,6 then the sig	nature of the quadration	c form is	[]
	A) 1	B) 2	C) 3	D) 0		
37.	The index and signatur	e of the quadratic for	$m x^2 + 3y^2 + 3z^2 -$	2zy are	[]
	A) 2,3	B) 2,1	C) 3,3	D) 0,1		
38.	If the canonical form o	of a quadratic form is	$y_1^2 + 2y_2^2 - 8y_3^2$ th	en index and		
	Signature of the quadra	atic form is			[]
		B) 2,1	C) 3,2	D) 0,1		
39.	The quadratic form cor	rresponding to the syr	nmetric matrix $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ is	[]
	$A) x^2 - 4y^2 + 4xy$		B) $x^2 - 4y^2 - 4xy$	•		
	C) $x^2 + 4y^2 + 4xy$		D) $x^2 + 4y^2 - 4xy$			
40.	The Eigen values of A	are 0,1,0 then the ran	k of the quadratic for	m is	[]

C)3

A) 1

B) 2

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE)

Year & Sem: II-B. Tech & I-Sem **Regulation:** R15

UNIT –II

1. Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection method. [10 M]

2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method. [10 M]

3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method. [10 M]

4. Find the root of the equation $xe^x = 2$ using Regula-falsi method. [10 M]

5. Find a real root of the equation $xe^x - \cos x = 0$ using Newton-Raphson method. [10 M]

6. Using Newton-Raphson Method

a) Find square root of 10. b)Find cube root of 27. [5 M][5 M]

7. Apply Gauss-Seidel iteration method to solve the equations of 20x + y - 2z = 17;

$$3x + 20y - z = -18$$
; $2x - 3y + 20z = 25$. [10 M]

8. Apply Crout's method to solve the equations: 3x + 2y + 7z = 4; 2x + 3y + z = 5;

$$3x + 4y + z = 7$$
. [10 M]

9. Find the root between 1 and 1.5 of the equation $\sin x = \frac{1}{x}$ (measured in radians). Carry out

computation up to 7th stage. [10 M]

10. a) Define transcendental Equation. [2 M]

b) Using Newton –Raphson method find square root of a number. [2 M]

c) Write the formula for Regula-Falsi method. [2 M]

d) Write the first approximation of the equation $3x = \cos x + 1$ by bisection method. [2 M]

e) Using Newton –Raphson method find reciprocal of a number. [2 M]

Prepared by: **R.LAKSHMI DEVI ,E.KARTHEEK**.

]

]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : MATHEMATICS-III(15A54301)

Course & Branch: B.Tech (ECE)

Year & Sem: II-B. Tech & I-Sem

Regulation: R15

UNIT - II

1. Example of a transcendental equation	

A. $f(x) = c_1 e^x + c_2 e^{-x} = 0$ B. $f(x) = x^2 + x - 7 = 0$ C. $f(x) = x^2 + 5x - 7 = 0$ D. None

2. Example of a algebraic equation

A. $f(x) = c_1 e^x + c_2 e^{-x} = 0$ B. $f(x) = x^3 - 7 = 0$ C. $f(x) = c_1 e^{2x} + c_2 e^{-3x} = 0$ D. None

3. The order of convergence in Newton-Raphson method is]

C.0A. 1 D.2 B. 3

4. The Newton-Raphson method fails when]

A. $f^{1}(x)$ is negative B. $f^{1}(x)$ is zero C. $f^{1}(x)$ is too large D. Never fails

5. In case of Bisection method, the convergence is]

A. linear B. 3 C. very slow D. quadratic

6. Under the conditions that f(a) and f(b) have opposite signs and a<b, the first approximation of one of the roots f(x)=0, by Regula-Falsi method is given by

A. $x_1 = \frac{af(a) - bf(b)}{f(a) - f(b)}$ B. $x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$

C. $x_1 = \frac{af(a) + bf(b)}{f(a) + f(b)}$ D. $x_1 = \frac{af(b) - bf(a)}{f(b) + f(a)}$

7. Bisection method is used for 1

A. Solution of algebraic or transcendental equation B. Integration of a function

C. Differential of a function D. Solution of a function

8. For ----- method of solution of equations of the form f(x) = 0 approximation x_0 is to be very close to the root and $f(x_n) \neq 0$

- A. Bolzano
- B. Newton-Raphson
- C.Secent
- D. Chord
- 9. In the bisection method of solution of an equation of the form f(x) = 0 the convergence of the sequence $\langle x_n \rangle$ of midpoints to a root of f(x) = 0 in an interval (a,b) where f(a)f(b) < 0

is

A. Assured and very fast

B. Not assured but very fast

C. Assured but very slow

- D. Independent on the sequence of point
- 10. Newton-Raphson method is used for

ſ

]

1

1

- A. Solution of algebraic or transcendental equation
- B. Integration of a function

C. Differential of a function

- D. Solution of a function
- 11. In the method of False position for solution of an equation of the form f(x) = 0 the convergence
 - of the sequence $\langle x_n \rangle$ iterates to a root of f(x) = 0 is

ſ

A. Assured and very fast

B. Not assured but very fast

C. Assured but slow

- D. Independent on the sequence of point
- 12. In Newton Raphson method we approximate the graph of f by suitable

ſ 1

- A. Chords
- **B.**Tangents
- C. Secants
- D. Parallel
- 13. Newton's iterative formula for finding a root of f(x) = 0 is

ſ 1

A.
$$x_{n+1} = x_n + \frac{f(x_n)}{f''(x_n)}$$

B.
$$x_{n+1} = x_n - \frac{f(x_n)}{f''(x_n)}$$

C.
$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$

D.
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

14. Newton-Raphson method is also called

A. Method of tangent

B. Method of false position

C. Method of chord

- D. Method of secants
- 15. Among the method of solution of equation of the form f(x) = 0 the one which is used commonly for its simplicity and great speed is ---method
- []

1

- A. Secant
- B. Regula falsi
- C. Newton Rasphson
- D. Bolzano

1

- 16. The Regula Falsi method is related to _____ at a point of the curve 1
 - A. Chord
- B. Ordinate
- C. Abscissa
- D. Tangent
- 17. The Newton Raphson method is related to _____ at a point of the curve

- A. Chord
- B. Ordinate
- C. Abscissa
- D. Tangent
- 18. Newton's iterative formula for finding the square root of a positive number N is]
 - A. $x_{i+1} = \frac{1}{2} \left(x_i \frac{N}{x_i} \right)$
- B. $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$

C. $x_{i+1} = \left(x_i - \frac{N}{r}\right)$

- D. $x_{i+1} = 2\left(x_i + \frac{N}{r}\right)$
- 19. Newton's iterative formula for finding the cube root of a number N is
- 1

- A. $x_{n+1} = 3 \left(2x_n \frac{N}{x^2} \right)$
- B. $x_{n+1} = \frac{1}{3} \left(2x_n \frac{N}{x^2} \right)$

- C. $x_{n+1} = \left(2x_n \frac{N}{x^2}\right)$
- D. $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x^2} \right)$
- 20. Newton's iterative formula for finding the reciprocal of a number N is
- ſ 1

- A. $x_{n+1} = \left(x_n \frac{N}{r^2} \right)$
- B. $x_{n+1} = x_n \left(2 \frac{N}{r} \right)$
- C. $x_{n+1} = x_n (2 Nx_n)$

- D. $x_{n+1} = x_n (2 + Nx_n)$
- 21. Regula- falsi method is used for

]

]

1

- A. Solution of algebraic or transcendental equation
- B. Integration of a function

C. Differential of a function

- D. Solution of a function
- 22. The cube root of 24 by Newton's formula taking $x_0 = 3$ is_____
 - A.1.889
- B.2.889
- C.5.889
- D.4.889
- 23. The square root of 35 by Newton's formula taking $x_0 = 6$ is_____
 - A.7.916
- B.5.916
- C.6.916
- D.4.916
- 24. Example of a transcendental equation

1

- A. $f(x) = x \log x 1.2 = 0$ B. $f(x) = x^3 x 1 = 0$ C. $f(x) = x^2 + x 7 = 0$ D. None

25. Example of a algebraic equation

A.
$$f(x) = x \log x - 1.2 = 0$$

A.
$$f(x) = x \log x - 1.2 = 0$$
 B. $f(x) = x^3 - x - 1 = 0$ C. $f(x) = x^2 \tan x + 1 = 0$ D. None

26. If first two approximation x_0 and x_1 are roots of $x^3 - 9x + 1 = 0$ are 0 and 1 by bisecton method then x_2 is

]

- A.1.5
- C. 0.5
- D. 3.5
- 27. If first two approximation x_0 and x_1 are roots of $xe^x = 2$ are 0 and 1 by Regula-falsi method then x_2 is

]

- A. 0.13575
- B. 0.33575
- C. 0.73575
- D. 0.53575
- 28. If first two approximation x_0 and x_1 are roots of $x^3 x 4 = 0$ are 1 and 2 by bisecton 1 method then x_2 is
 - A.1.5
- C. 0.5
- D. 3.5
- 29. If first two approximation x_0 and x_1 are roots of $x^3 x 4 = 0$ are 1 and 2 by Regulafalsi method then x_2 is

]

]

]

[

- A.4.666
- B. 2.666
- C. 3.666
- D. 1.666
- 30. Newton's iterative formula for finding the pth root of a positive number N is 1

A.
$$x_{n+1} = \frac{1}{p} \left((p-1)x_n + \frac{N}{x_n^{p-1}} \right)$$

B.
$$x_{n+1} = \frac{1}{p} \left((p-1)x_n - \frac{N}{x_n^{p-1}} \right)$$

C.
$$x_{n+1} = p \left((p-1)x_n - \frac{N}{x_n^{p-1}} \right)$$

D.
$$x_{n+1} = \left((p-1)x_n - \frac{N}{x_n^{p-1}} \right)$$

31. The general iteration formula of the Regula Falsi method is

A. $x_{n+1} = x_n + \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$

B.
$$x_{n+1} = x_n + \frac{x_n + x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

C.
$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

C.
$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

D. $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) + f(x_{n-1})} f(x_n)$

32. If first approximation root of $x^3 - 5x + 3 = 0$ is $x_0 = 0.64$ then x_1 by Newton-Raphson

method is

A.4.6565

B. 2.6565

C. 3.6565

D. 0.6565

33. Newton's iterative formula to find the value of \sqrt{N} is

1

$$A. x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

B.
$$x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$$

C.
$$x_{n+1} = \left(x_n - \frac{N}{x_n}\right)$$

D.
$$x_{n+1} = 2\left(x_n - \frac{N}{x_n}\right)$$

34. If first approximation root of $x^2 - 10 = 0$ is $x_0 = 3.8$ then x_1 by Newton-Raphson

method is

]

A.0.215

B. 1.215

C. 2.215

D. 3.215

35. Newton's iterative formula to find the value of $\sqrt[3]{N}$ is

]

A.
$$x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$$

B.
$$x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x_n^2} \right)$$

$$C. x_{n+1} = \left(2x_n - \frac{N}{x_n^2}\right)$$

D.
$$x_{n+1} = 3\left(2x_n + \frac{N}{x_n^2}\right)$$

36. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by Regula-

Falsi method then x_2 is

]

A. 1.7888

B. 2.7888

C. 3.7888

D. 4.7888

37. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by

Bisection method then x_2 is

]

A. 1.75

B. 2.75

C. 3.75

D. 4.75

38. Crout's triangularisation method is also called

]

A. Gauss elimination

B. LU factorization

C. Gauss jordan

D. None of these

39. If first approximation root of $\cos x - x^2 - x = 0$ is $x_0 = 0.5$ then x_1 by Newton-Raphson

method is

]

A.0.5514

B. 1.5514

C. 2.5514

D. 3.3314

40. If second approximation root of $x + \tan x + 1 = 0$ is $x_1 = 2.77558$ then x_2 by Newton-

Raphson method is

[

]

A.1.798

B. 2.798

C. 2

D. 0.798

Prepared by: **R.LAKSHMI DEVI ,E.KARTHEEK**.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Mathematics-III Course & Branch: B.Tech – ALL

Year & Sem: **Regulation: R15**

UNIT -I

1. Using Newton's Forward Interpolation Formulae, find the polynomial y = tanx satisfying the following data, Hence evaluate tan(0.12) and tan(0.28)

X	0.10	0.15	0.20	0.25	0.30
Y	0.1003	0.1511	0.2027	0.2533	0.3093

[10M]

2.Use Bessels formula to compute f(1.95) from the following data

X	1.7	1.8	1.9	2.0	2.1	2.2	2.3
Y	2.979	3.144	3.283	3.391	3.463	3.997	4.491

[10M]

3. Using stirlings formula, compute f(1.22) from the following data

X	1.0	1.1	1.2	1.3	1.4
Y	0.841	0.891	0.932	0.963	0.985

[10M]

4. Apply Newton's Forward Interpolation Formula to compute the value of $\sqrt{5.5}$ up to three decimal places. Given $\sqrt{5} = 2.236$, $\sqrt{6} = 2.449$, $\sqrt{7} = 2.646$, $\sqrt{8} = 2.828$ [5M]

- 5 a) Given f(2) = 10, f(1) = 8, f(0) = 5, f(-1) = 10 estimate $f(\frac{1}{2})$ by using Gauss forward formula. [5M]
 - b) Evaluate f(10) given f(x) = 168,192,336 at x = 1,7,15 respectively, use Lagrange interpolation. [5M]
- 6 a) Use Gauss Backward interpolation formula to find f(32) given f(25) = 0.2707, f(30) =0.3027 f(35) = 0.3386, f(40) = 0.3794[5M]
 - b) Find the unique polynomial P(X) of degree 2 or less such that P(1) = 1 P(3) = 27, P(4) = 164 using Lagrange's interpolation formula.
- 7. a) Using lagrange's formula, calculate f(3) from the following table.

X	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

b) Find y(1.6) using Newton's forward difference formula from the table

X	1	1.4	1.8	2.2
Y	3.49	4.82	5.96	6.5

[5M]

8 a) Using Lagrange's formula for interpolation find the value of f(4)

X	0	2	3	6
f(x)	-4	2	14	158

[5M]

[2M]

b) Find y(2.5) given that $y_{20} = 24$, $y_{24} = 32$, $y_{28} = 35$, $y_{32} = 40$ using Gauss forward interpolation formula. [5M]

9 a)Using Lagrange's formula express the function $\frac{x^2+6x-1}{(x^2-1)(x-4)(x-6)}$ [5M]

b) For X = 0.1, 2.4, 5; f(X) = 1.14, 15.5, 6 find f(3) using forward difference table. [5M]

10 a) Write newton's forward interpolation formula.

b) Write newton's backward interpolation formula. [2M]

c) Write Lagrange's interpolation formula. [2M]

d) Write Stirllings formula. [2M]

e) Write Bessel's formula. [2M]

Prepared by: K.SUBHASHINI, P.USHA

Course & Branch: B.Tech - ALL

Regulation: R15

1

]

Subject with Code: Mathematics-III

Year & Sem: II-B.Tech & I-Sem

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

			UN	NIT – 1	<u>III</u>			
1. D is called							[]
A)Displacement oper	rator			B) F	orward	difference operator		
C) Backward differer	nce operat	or		D) <i>A</i>	Averagin	g operator		
2. δ is called							[]
A)Displacement oper	ator			B) F	orward	difference operator		
C) Backward differer	nce operat	or		D) <i>A</i>	Averagin	g operator		
3. Find y at x=0.8 to the follow	ving table						[]
	Χ	0	1	2				
	у	1	1.8	3.3				
A)Newton's forward	formula		!	B)N	lewton's	backward formula		
C) Gauss formula				D) L	agrange	e's formula		
4. The following is used for ur	equal inte	erval	of x va		0 0		[]
A) Lagrange's formula	·				Newton's	s forward formula		
C)Newton's backward forr	nula			D)G	Sauss for	ward formula		
5. If $x = 0,1,2,3$ and $y = 1,1.5,2$.2,3.1 the	$n \Delta^2$	f(3)	=				
A) 0.3 B)0.1		,	C)0.			D)0.4		
6. Gauss forward formula invo	olves diffe	nces	below	v the ce	ntral lin	e and even differences	on the	line in
∆,then it is useful							[1
A) $0 B)-1$	< n < 0		C)—c	∞ < n ·	< 0	D) $0 < n < \infty$	-	_
7. If the value to be determine	-			-			[1
A) Newton's forward formu		g		_		s backward formula	L	J
C) Lagrange's formula				•	tirling's			
8. If the value of be determined	ed is at the	end	of ta	•	Ū		[1
A) Newton's forward formul		Joina	J. tu			s backward formula	L	1
C) Lagrange's formula	u			•	tirling's			
o, Lagrange s formula				כום	mining 3	i Oi i i i diu		

C) E = D

D) None

D)3

A) $E = e^{hD}$

A)0

9) The relation between the operators E and D is

B)1

B) $D = e^{hE}$

11) The relation between the operators and E is △ is ------

10) The $(n + 1)^{th}$ order difference of the nth degree polynomial is

A) $\Delta = E - 1$	B) $\Delta = E + 1$	C)) $\Delta = \frac{1}{E}$	D) None		
12) μ is called				[]
A) Averaging operato		B) Difference	•		
C) Forward differenc	•		difference operator	_	_
	een the operators and			[J
A) $\delta = E^{\frac{1}{2}} + E^{\frac{-1}{2}}$	B) $\delta = E^{\frac{1}{2}} - E^{\frac{-1}{2}}$	C) $\delta = E^2 - E^{-2}$	D) $\delta = E^1 - E^{-1}$		
14)Evaluate Δx is				[]
A) h	B)-h	C)x+h	D)None		
15) If $x = 1,2,3,4$ and	f(x) = 1,4,27,64 as	sume $x = 2.5$ then p =	·	[]
A) 1.5	B)1	C)0.25	D)2		
16) If $x = 1.5$, $x_0 = 1$	and $h = 1$ then $p =$			[]
A)-0.5	B)0.5	C)0.4	D)1.5		
17) If $x = 3.5$, $x_n = 4$	and $h=2$ then $p=-$			[]
A)-0.25	B)0.25	C)0.025	D)-0.025		
18)If $h = 0.1$, $p = 1.5$,	$x_0 = 0.1 \text{ then x} =$			[]
A)0.02	B)0.2	C)-0.25	D)0.25		
19)By N.F.I.F. $\sqrt{5} = 2.2$	$236, \sqrt{6} = 2.449, \sqrt{7} =$	$= 2.646 then \sqrt{5.5} =$		[]
A)-2.345	B)2.0345	C)2.345	D)2.534		
20)Find the unique po	lynomial $p(x)$ of degree	ee 2 suchthat $p(0) = 0$	0, p(1) = 1, p(2) = 4	[]
A) $3x + 4x^2$	B) $4x + 3x^2$	C) $3x - 4x^2$	D) $-4x + 3x^2$		
04\51 1.11 1.1					
21)Find the missing to	erm in the following da	ta		[]
X 0 1 2 3 4	erm in the following da]]	ta		[]
	erm in the following da] 	ta		[]
X 0 1 2 3 4	erm in the following da]] B)13	ta C)31	D)30	[]
X 0 1 2 3 4 y 1 3 9 - 81	B)13	C)31	D)30	[]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following	B)13	C)31	D)30]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15	B)13 Δy_{-2}	C)31	D)30]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15	B)13 g table find Δy_{-2}	C)31	D)30 D)-3]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4	B)13 g table find Δy_{-2} 20 24	C)31 = C)3	D)-3]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4	B)13 g table find Δy_{-2} 20 24 B)4	C)31 = C)3	D)-3	[]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff	B)13 y table find Δy_{-2} 20 24 B)4 Ference of a polynomi B)a constant	C)31 = C)3 al of degree 'n' is	D)-3 	[]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff A)zero	B)13 y table find Δy_{-2} 20 24 B)4 Ference of a polynomi B)a constant	C)31 = C)3 al of degree 'n' is	D)-3]]]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff A)zero 24)From the following 24	B)13 y table find Δy_{-2} 20 24 B)4 Ference of a polynomi B)a constant	C)31 = C)3 al of degree 'n' is	D)-3]]]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided difference A)zero 24)From the following X 0 1 3	B)13 y table find Δy_{-2} 20 24 B)4 Ference of a polynomi B)a constant	C)31 = C)3 al of degree 'n' is	D)-3]]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff A)zero 24)From the following X 0 1 3 y 0 1.4 2.4 A) 2	B)13 y table find Δy_{-2} $\overline{20}$ $\overline{24}$ B)4 fference of a polynomi B)a constant y table find $y(2) =$	C)31 C)3 al of degree 'n' is C)a variable C)3	D)-3 D)None]]]]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff A)zero 24)From the following X 0 1 3 y 0 1.4 2.4 A) 2	B)13 g table find Δy_{-2} 20 24 B)4 ference of a polynomi B)a constant g table find $y(2) =$ B)-2	C)31 C)3 al of degree 'n' is C)a variable C)3	D)-3 D)None D)None	[]]
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	B)13 g table find Δy_{-2} 20 24 B)4 Ference of a polynomi B)a constant g table find $y(2) =$ B)-2 of differencing the $\Delta^2 z$	C)31 C)3 al of degree 'n' is C)a variable C)3 $c^3 = c - 6h^2[x + h]$	D)-3 D)None D)None D) $-6h^2[x-h]$	[]]
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	B)13 g table find Δy_{-2} 20 24 B)4 Eference of a polynomi B)a constant g table find $y(2) =$ B)-2 of differencing the $\Delta^2 x$ B) $6h^2[x-h]$ most appropriate who	C)31 C)3 al of degree 'n' is C)a variable C)3 $c^3 = c - 6h^2[x + h]$	D)-3 D)None D)None D) $-6h^2[x-h]$	[]]
X 0 1 2 3 4 y 1 3 9 - 81 A)29 22)From the following X 0 5 10 15 y 7 11 14 18 A)-4 23)The nth divided diff A)zero 24)From the following X 0 1 3 y 0 1.4 2.4 A) 2 25) If h is the interval A) 6h ² [x + h] 26)Bessel's formula is	B)13 g table find Δy_{-2} 20 24 B)4 Eference of a polynomi B)a constant g table find $y(2) =$ B)-2 of differencing the $\Delta^2 x$ B) $6h^2[x-h]$ most appropriate who	C)31 C)3 al of degree 'n' is C)a variable C)3 $c^3 = c - 6h^2[x + h]$ en p lies between	D)-3 D)None D)None D) $-6h^{2}[x-h]$	[]]]

28)The forward differe	ence operator is			[]
Α) Δ	B) ∇	C) μ	D)None		
29)The Backward diffe	rence operator is			[]
Α) Δ	B) ∇	C) μ	D) δ		
30)Central difference	operator is			[]
Α) Δ	B) ∇	C) μ	D) δ		
$31) \Delta f(x) =$				[]
A) f(x) - f(x+h)	B)-f(x)+f	(x+h) C)	f(x+h)	D) None	
32) $\nabla f(x) = \cdots$				[]
A) f(x) - f(x+h)	B)-f(x)+f	(x+h) C)	f(x) - f(x - h)	D) f(x-h)	
33) Δ≡	-			[]
A) 1 − <i>E</i>	B) $E - 1$	C) $1 - E^{-1}$	D) $1 + E^{-1}$		
34) $E \equiv$				[]
A) Δ	B) $E - 1$	C) 1 + Δ	D) 1 — Δ		
35) Δ <i>E</i> =	-			[]
A) Δ	B) ∇	C) δ	D)None		
36) Δ − ∇=				[]
Α) Δ	B) ∇	C) δ^2	D) δ	-	_
37) $(1 + \Delta)(1 - \nabla) =$		•		[1
A)0	B)1	C)2	D)-1	-	_
$38)^{\frac{\Delta^2}{F}}(e^x) =$		•	, 	[]
A) $e^{x}(e^{h}-1)^{2}$	B) $e^{x}(e^{h}-1)$	C) $e^{x-h}(e^h - 1)$	1) ² D)None		
39)Stirling's formula is	best suitable for p lyir	ng between		[]
A) $)\frac{1}{2}\&-\frac{1}{2}$	B)-1 & 1	C)) $\frac{1}{4}$ & $-\frac{1}{4}$	D) 0&1		
40)From the following	table if $x = 0.05$ then p) =		[]
X 0 0.1 0.2	0.3 0.4				
Y 1 1.2214 1.49	918 1.8221 2.255				
A)0	B)0.1	C)0.05	D)0.5		

Prepared by: K.SUBHASHINI,P.USHA

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE)

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

UNIT -IV

1. Derive normal equations to fit the straight line y = a+bx.

[10 M]

2. Derive normal equations to fit the straight line $y = a+bx+cx^2$.

[10 M]

3. a) Fit a straight line y=a+bx from the following data

[5 M]

X	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

b) Fit a straight line y=ax+b from the following data

[5 M]

X	6	7	7	8	8	8	9	9	10
Y	5	5	4	5	4	3	4	3	3

4. Fit a second degree polynomial to the following data by the method of **least squares**

[10 M]

X	0	1	2	3	4
Y	1	1.8	1.3	2.5	6.3

5. a) Fit the curve of the form $y = ae^{bx}$

[5 M]

X	77	100	185	239	285
Y	2.4	3.4	7.0	11.1	19.6

b) Fit the curve of the form $y = ab^x$ for

[5 M]

X	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

6. a) From the following table values of x and y, find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ for x =1.5

[5 M]

X	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.375	7.0	13.625	24.0	38.875	59

b) From the following table values of x and y, find $\frac{dy}{dx}$, when x=3 and x=6

[5 M]

X	0	1	2	3	4	5	6
Y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

7. Compute $f^{1}(4)$ from the following table

[10 M]

X	1	2	4	8	10
Y	0	1	5	21	27

8. Evaluate
$$\int_{0}^{1} \frac{1}{1+x} dx$$

[10 M]

- i) By trapezoidal rule and Simpson's $\frac{1}{3}$ rule.
- ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.

9. a) Compute
$$\int_{0}^{4} e^{x} dx$$
 by Simpson's $\frac{1}{3}$ rule with 10 subdivisions. [5 M]

- b) .Find $\int_{0}^{x} x^{2} \log x dx$, using trapezoidal rule and Simpson's rule by 10 sub divisions. [5 M]
- 10. a) Define error for least Square. b) What is Curve –fitting? [5x2=10 M]
 - c) Write the trapezoidal rule formula. d) Write the normal equations for the straight line

$$y = a+bx+cx^2$$
. e) Write the Simpson's $\frac{1}{3}$ rule formula.

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: MATHEMATICS-III(15A54301)	Course & Branch: B.Tech (ECE)
--	-------------------------------

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

<u>UNIT – II</u>

1.The princilple of least squares states that [
a)sum of residuals is minimum	b)sum of residuals is maximum					
c)sum of squares of the residuals is	minimum d)none					
2. The process of calculating derivatives of a function near the beginning Of the table makes use of [
a)Newton's forward interpolation fo	ormula b)Newton's backward formula					
c)gauuss's formula	d)lagrange's interpolation formula					
3. In the general quadrature formula	n=2 gives	[]			
a)Trapezoidal rule	b)simpson's $\frac{1}{3}$ rule					
c)simpson's $\frac{3}{8}$ rule	d)weddle's rule					
4. In the general quadrature formula	n=3 gives	[]			
a)Trapezoidal rule	b)simpson's $\frac{1}{3}$ rule					
c)simpson's $\frac{3}{8}$ rule	d)weddle's rule					
5.In application of simpson's $\frac{1}{3}$ rule,	the interval h for closer app should be	[]			
a)even and small	b)odd and small					
c)equal to zero	d)none					
6.By trapezoidal rule, $\int_{a}^{b} f(x)dx =$		[]			

d)none

a)
$$\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

b)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

c)
$$\frac{h}{3}$$
[(y₀ + y_n) + 2(y₂ + y₄ +) + 3(y₁ + y₃ +)]

7.In simpson's $\frac{1}{3}$ rule the number of sub intervals should be

a)even b)odd c)multiple of 3 d)none

8. In simpson's $\frac{1}{2}$ rule the number of ordinates should be ſ]

a)even b)odd c)multiple of 3 d)none

9. In simpson's $\frac{3}{8}$ rule the number of sub intervals should be]

a)even b)odd c)multiple of 3 d)none

[] 10. Among Regula-falsi method and Newton-raphson method, the

Rate of convergence is faster for

a) Newton-raphson method b) Regula-falsi method c)cant say d)none

11. Normal equations of the straight line $y = a_0 + a_1 x$ are

a)
$$\sum y = ma_0 + a_1 \sum x$$
 b) $\sum xy = a_0 \sum x + a_1 \sum x^2$

c)a&b d)none

12.If $y = a + bx + cx^2$ then the first normal equation by least square 1

Method is $\sum y_i =$

a)
$$ma_0 + a_1 \sum x_i + a_2 \sum x_i^2$$
 b) $a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3$

c) $a_0 \sum_i x_i^2 + a_1 \sum_i x_i^3 + a_2 \sum_i x_i^4$

13. If $y = a + bx + cx^2$ then the second normal equation by least square [] Method is $\sum x_i y_i =$

a)
$$ma_0 + a_1 \sum x_i + a_2 \sum x_i^2$$

a)
$$ma_0 + a_1 \sum x_i + a_2 \sum x_i^2$$
 b) $a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3$

c)
$$a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4$$
 d)none

14. If $y = a + bx + cx^2$ then the third normal equation by least square

]

Method is $\sum x_i^2 y_i =$

a)
$$ma_0 + a_1 \sum x_i + a_2 \sum x_i^2$$

a)
$$ma_0 + a_1 \sum x_i + a_2 \sum x_i^2$$
 b) $a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3$

c)
$$a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4$$
 d)none

15. If
$$\sum x_i = 15$$
, $\sum y_i = 30$, $\sum x_i y_i = 110$, $\sum x_i^2 = 55$ and $y = a_0 + a_1 x$

ſ

1

]

]

]

]

]

Then $a_0 =$

16. The nth order difference of polynomial of nth degree is

[

17. The normal equation of straight line is εy =

[

18. The normal equation of parabola line is $\epsilon_y =$

[

b) na+b
$$\varepsilon$$
x+c ε x²

d)
$$a+\varepsilon x+\varepsilon x^3$$

19. In exponential curve y=ae^{bx}, Y=

[

a) In y

b) log y

c) y

d) none

20. The value of $\int_{1}^{2} 1/x \, dx$ by Trapezoidal rule(take n=4) is

[

a) 0.697

b) 0.589

c) 0.456

d) 56

21. The value of $\int_0^1 1/(1+x) dx$ by simpson's 1/3 rule(take n=4) is

]

a) 0.693

b) 0.589

c) 0.456

d) 56

22.In simpson's
$$\frac{1}{3}$$
 rule state that $\int_a^b f(x) dx =$

]

a)
$$\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

b)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

c)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots)]$$
 d)none

23.In simpson's
$$\frac{3}{8}$$
 rule state that $\int_a^b f(x) dx =$

]

a)
$$\frac{3h}{8}[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_4 + y_{n-1}) + 2(y_3 + y_6 + y_9 + y_6 + y_n)]$$

b)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

c)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots)]$$
 d)none

24.If

[]

Х	1	2	3	4	5
у	14	27	40	55	68

Then ∑xy=.....

25. The power curve is

a)15

c)55

d)748

a)y=ax^b

b) y=ab^x

c) y=ae^b

d)none

26. The exponential curve is.....

]

]

a)y=ax^b

b) y=ab^x

c) y=ae^{bx}

d)none

]

a) exponential

b) power

28. In simpson's 1/3 rule the number of subintervals should be

c) parabola

d) none

b) odd

c) multiples of 3 d) none

29. Putting n=2 in Newton- cotes Quadrature formula we obtain _

a) Tra 30. If y=8.	pezoid 3,Y= lo		b) Sim _l n Y=		1/3		c) Si	mpson's 3/8	d) none	[]
a) 0.91 31. If y=4.0		In(y)	b) 9.19 then Y				c) 0	.0919	d) none]]
a) 1.04 32. If	0		b) 1.40)5			c) 0	.4059	d) none	[]
	Х	0	2	5	7						
-	у	-1	5	12	20						
Then		<u> </u>				∑x ²	=				
a) 79			b) 78			C	:) 77		d) none		
33. If										[]
	Х	0	1	2	3	4					
-	у	1	1.8	3.3	4.5	6.3					
Then						1	Σ	κ =			
a) 10 34. If			b) 11			c)	12		d) none	[]
	Х	0	5	10	15	20	25				
=	у	12	15	17	22	24	30				
Then		1				l l		∑y =			
a) 12 35. If			b) 139			c) 12	20	d) ı	none	[]
	Х	0	1.0	2.0							
-	у	1.0	6.0	17.0							
Then		1			_ n =	·					
a) 2			b) 4					c) 3	d) none		
36. If <i>y</i> =	= a + bx	$x + cx^2$	² the s	econd	norm	al eqi	uatio	n by least squ	are]]
Meti	hod is										
a) $y = 37$. The N								y = bx + c	x ² d) none	[]

Mathematics-III

a) $y = a_1 x$ b) $y = a_0 + x$

c) $y = a_0 + a_1 x$

d) none

38. If y=ax² is equation

[]

a) ellips

b) parabola

c) hyparbola

d) none

39. If y=2x+5 is the best fit for 6 pairs of values (x,y) by the method of least squares,

ſ

1

]

find $\sum x_i$ if $\sum y_i = 120$.

a) 40

b) 35

c) 45

d) 30

40. If $y = a + bx + cx^2$ and

[

Х	0	1	2	3	4
у	1	1.8	3.3	2.5	6.3

Then the second normal equation is

a) 37.1=8a+28b+100c

b) 37.1=10a+30b+100c

c) 35.1=10a+28b+100c

d) 10a+30b+96c= 37.1

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE)

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

UNIT-V

1.a) Tabulate y (0.1), y (0.2), and y (0.3) using **Taylor's series method** given that

[5 M]

 $y^1 = y^2 + x$ and y(0) = 1

b) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by **Taylor's series method**

[5 M]

[10 M]

2. Find y(0.1),y(0.2),z(0.1),z(0.2) given $\frac{dy}{dx} = x+z$, $\frac{dz}{dx} = x-y^2$ and y(0)=2,

Z(0)=1 by using **Taylor's series method**.

3.a) Find the value of y for x=0.4 by **picards method** given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 [5 M]

b) Obtain y(0.1) given
$$y^1 = \frac{y - x}{y + x}$$
, y(0)=1 by **picards method**. [5 M]

4.a) Given that
$$\frac{dy}{dx} = 1 + xy$$
 and $y(0) = 1$ compute $y(0.1), y(0.2)$ using **picards method** [5 M]

b) Solve
$$y^1 = y - x^2$$
, $y(0) = 1$ by **picards method** upto the fourth approximation. [5 M]

Hence find the value of y(0.1), y(0.2).

5. a) Using modified Euler's method find
$$y(0.2)$$
, $y(0.4)$ given $y^1 = y + e^x$, $y(0) = 0$ [5 M]

b) Find the solution of
$$\frac{dy}{dx}$$
 = x-y, y(0)=1 at x=0.1, 0.2, 0.3, 0.4, 0.5 using [5 M]

Modified Euler's Method.

6. Given that $y^1 = x + \sin y$, y(0) = 1 compute y(0.2), y(0.4) with h = 0.2 using **Euler's Modified method** [10 M]

7.a) Use **Runge- kutta method** to evaluate
$$y(0.1)$$
 and $y(0.2)$ given that $y^1 = x + y$, $y(0) = 1$ [5 M]

b) Find
$$y(0.1)$$
 and $y(0.2)$ using **R-K 4th order formula** given that $y^1 = x^2 - y$ and $y(0) = 1$ [5 M]

8. Using R-K method of 4th order, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
, y(0)=1 Find y(0.2) and y(0.4) [10 M]

$$y^1=x-y^2$$
 at $x=0.8$ given that $y(0)=0$, $y(0.2)=0.02$, $y(0.4)=0.0795$, $y(0.6)=0.1762$

b) Use **Milne's method** to find
$$y(0.8)$$
, $y(1.0)$ from $y^1=1+y^2$, $y(0)=0$ [5 M]

Find the initial values y(0.2), y(0.4), y(0.6) from the R-K method

- b) Write the SFPF formula for Laplace Transforms.
- c) Write the formula for R-K method.
- d) Write the Milne's predictor corrector formula.
- e) Solve $y^1 = y x^2$, y(0) = 1 by **picards method** upto the Second approximation.

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: MATHEMATICS-III(15A54301)	Course & Branch: B.Tech(ECE)
**	D 1.4 D45

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

<u>UNIT - V</u>							
1.Successive approximations are used in							
a)Milne's method	b)Picard's method c)Taylor series method	d)none	[]		
2Which of the follow	2Which of the following in a step by step method:						
a)Taylor's series	b)Adam's bashforth	c)Picard's	d)none	[]		
3.Runge-kutta method is self starting method:							
a)true	b)false	c)we can't say	d)none	[]		
4.Predictor-corrector methods are self starting methods:							
a)true	b)false	c)we can't say	d)none	[]		
5.The second order Runga-kutta formula is							

Mathematics-III

a)Euler's method	b)Newton's	s method			
c) modified euler's method	d)none			[]
6. The following is called predi	ctor-corrector met	thod:			
a)Picard's method	b)Euler's method	i			
c)Milne's method	d)none			[]
7. Which of the following is bes	t for solving initia	l value problems.			
a)Euler's method	b)Modified F	Euler's method			
c)Taylor's series method	d)Runge-kutt	a method of order 4		[]
8.In Adam's method atleast val	ues of y,prior to th	ne desired value, are			
Required					
a)Five	b)two	c)six	d)four	[]
9.If' 'n' conditions are specified	d at the initial	point ,then it is called		[]
a)initial value problem	b)final valu	e problem			
c)boundary value problem	d)none				
10. If 'n' conditions are specifie	ed at two or more	e points, then it is called			
a)initial value problem	b)final valu	ne problem			
c)boundary value problem	d)none			[]
11. To apply milne's method w	e require	_ prior values of y		_	_
				[]
a) 1 b) 2 12. The first order Runge-Kutta	c) 3 method is $=$	d) 4			
a) Euler's method b)Modifi	as Fular's mathod	_ a)Taylor's mathod	d) Pica	[rd's m]
13. The second order Runge-Ku		· · · · · · · · · · · · · · · · · · ·	·		ictilou
a) $y_0 + (k_1 + k_2)$ b	$v_0 - (k_1 + k_2)$	c) $y_0 + \frac{1}{2}(k_1 + k_2)$		$[\frac{1}{2}(k_1-$] + k ₂)
14. To apply Fourier series, the		L		2	· K 2)
a) Euler's b)	Dirichlet's	c) Laplace	d) noi	[ne]
15. The n th difference of a n th d			<i>a,</i> noi	[]

a) Constant	b) Z	ero	c) one	d) no	one	
16. Successive ap	proximations use	ed in	method		[]
a) Euler's	b) T	aylor's	c) Picard's	d) R-	·K	
17.,The taylor's f	for $f(x) = log(1 + $	x) is				
a) $x - \frac{x^2}{2} + \frac{x^3}{3} -$	b) x	$+\frac{x^3}{3}$	c) both a and	b d)no	n []
18. The taylor's f	for solutions of tl	ne equations	$\frac{dy}{dx} = f(x,y), y(x_0)$	= y ₀ is	[]
			b) $y(x)=y_0+\frac{(x-x_{0})}{2!}$			
c) both a a	and b		d)none			
19. Disadvantage	of picard's metl	nod is				
a) It can be ap	plied to those eq	uations only	in which successiv	ve integrations	can be	
performed of	easily					
b)can be applied	to those equation	ns only in wh	ich successive into	egrations can b	e perfo	rmed
difficulty.	to mose equation	c) both a an		d)none	[]
·	tor-corrector me		methods	,		•
_						
a)Picard's m	ethod	b)Euler's m	ethod			
c)Milne's me	ethod	d)self- start	ing method		[]
21. The R-K m	ethod is a	me	ethod			
a)Picard's m	ethod	b)Euler's m	ethod			
c)Milne's me	ethod	d)self- start	ing method		[]
22.The fourth or	rder R-K formul	la is				
a) $y_1 = y_0 + \frac{1}{6}$	$(k_1+2k_2+2k_3+k_4)$)	b) $y_1 = y_0 + \frac{1}{6}$	$(k_1+2k_3+k_4)$)	
c) $y_1 = y_0 + \frac{1}{6}$	$(k_1+2k_2+2k_3)$		d)none		[]
23. Using Euler	r's method $y^1 = \frac{3}{3}$	$\frac{y-x}{y+x}$, y(0)=1 a	and h=0.02give y ₁ :	=		
a)0.02	b) 1.02	2.02	d)3.02		[]
24.Using Euler	r's method $y^1 = \frac{3}{3}$	$\frac{y-x}{y+x}$, y(0)=1 t	hen the picard's n	nethod the valu	e of	
$y^1(x)=\ldots$					[]
a) $1 + 2\log(1)$	(a+x) b) 1-x	$x+2\log(1+x)$	c) x+2log(1	(+x) d)n	one	

25. If $\frac{dy}{dx} = x-y$	and $y(0)=1$ then by J	picard's method	the value of $y^1(1)$ is	[]
a) 0.905	b) 1.905	c) 2.9	d)none		
$26. \text{ If } \frac{dy}{dx} = x^2 + y$	y^2 , y(0)= 0 then by p	icard's method th	he value of $y^{l}(x)$ is	[]
a) 1 +2log(1+	-x) b) 1-x+2le	og(1+x) c) $x+2$	$2\log(1+x) \qquad d)x^3/3$		
27. If $\frac{dy}{dx} = x + y$	$y(0) = 1$ and $y^{1}(x) = 1$	$1+x+x^2/2$, then by	picard's method the	e value of	$y^2(x)$
is				[]
a) $1 + x + x^2 +$	$-x^3/6$ b) 1 -x+	$-x^2+x^3/6 c$	$) x + 2\log(1+x) \qquad c$	l)none	
28. If y ₀ =1 h=0.	2, $f(x_0, y_0)=1$ then by	y Euler's method	the value of $y_1 =$	[]
a) 0.2	b) 1.2	c) 2.2	d)none		
29. If $y^1 = y - x$ and	d y(0) = 2, h=0.2 th	nen by Euler's me	ethod the value of y ₁	= []
a) 0.4	b) 1.4	c) 2.4	d)none		
$30.\text{If } \frac{dy}{dx} = -x,$	y(0)=1,h=0.01 then	by Euler's metho	od the value of $y_1 =$	[]
a) 1.99	b) 2.99	c) 0.99	d)none		
31.If y ₁ =1.02,h=	$=0.02$, $f(x_1,y_1)=0.96$	15 then the value	of y ₂ by Euler's me	thod is []
a) 1.0577	b) 1.0477	c) 1.0377	d)none		
32. if $y_1=1.1,h=0$	$0.1, f(x_1, y_1) = 1.2$ then	by euler's metho	od the value of y_2 is.	[]
a)0.22	b) 1.22	c)2.22	d)3.222		
33.if $y_1=1.2,h=0$	$.2, f(x_1, y_1) = 1.4, \text{ then}$	n by euler's meth	od the value of y ₂ is	[]
a)3.48	b)2.48	c)1.48	d)0.48		
34. If $\frac{dy}{dx} = \frac{y-2x}{y}$, y	(0)=1 and h=0.1 the	the value of y ₁ b	by eulers method is	. []
a)1.1813	b)0.1813	c)2.1813	d)3.1813		
35.If $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y	f(0)=1, h=0.2 then the	ne value of k ₁ in t	fourth order R-K me	thod is []
a)0.01	b)0.002	c)0.2	d)0.000002		
$86. \text{ If } \frac{dy}{dx} = x + y^2, y$	y(0)=1, h=0.1 the va	alue of K ₂ in the	fourth order R-K me	thod is []
a)0.1152	b)0.5211	c)1.5211	d)1.1152		

 $37.\text{If } \frac{dy}{dx} = x^2 + y^2, f(x_0, y_0) = 1, \text{ h=0.1, k}_1 = 0.1, k_2 = 0.1105, k_3 = 0.1105 \text{ and k}_4 = 0.1222 \text{ then the value of y(1.1)}$

by fourth order R-K method is.....

[

a)0.5566

b)0.4488

c)0.1107

d)0.2234

38.If $\frac{dy}{dx}$ = x+y, f(x₀, y₀)=1, h=0.2, k₁=0.1, k₂=0.11, k₃=0.1105 and k₄=0.12105 then the value of

 $y(0.2) = \dots$

]

a)1.5566

b)1.4488

c)1.1107

d1.2428

39. Given y_0, y_1, y_2, y_3 milne's corrector formula $y_4 = \dots$

a) $y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$ b) $y_2 - \frac{h}{3}(f_2 + 4f_3 + f_4)$ c) $y_2 + \frac{h}{3}(f_2 - 4f_3 + f_4)$ d)none

40.Milne's predictor formula y_{4=....}

a) $y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$ b) $y_2 - \frac{h}{3}(f_2 + 4f_3 + f_4)$ c) $y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3)$ d)none