

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : CNS (13A05702) Course & Branch: B.Tech - CSE

Regulation: R13 Year & Sem: IV-B.Tech & I-Sem

<u>UNIT –I</u>

1. A. Explain in detail different passive and active attacks.	5M
B. What is software vulnerabalility? Explain various methods of vulnerability	5M
2. A. What is meant by security service? Explain various security services listed in X.800.	6M
B. Differentiate the cipher properties of confusion and diffusion.	4M
3. A. Compare all the features of stream and block ciphers.	4M
B. Explain about various non cryptographic vulnerabilities.	6M
4. A. Explain in detail the sub key generation and round function of DES algorithm in detail.	5M
B. Explain the Fiestel cipher structure with a neat sketch. And also explain its importance.	5M
5. A. What is a security attack? Explain different security mechanism.	5M
B. Explain the characteristics of block and stream ciphers.	5M
6. A. Define threat and attack. What is the difference between both? List some examples of attack.	cks
which have arisen in real world cases.	6M
B. Describe the mechanisms for preventing and detecting hijacking problems.	4M
7. A. What is meant by Denial of Service (DOS), Spoofing & Phishing? Explain.	5M
B. Explain Hill cipher with an example.	5M
8. Explain AES encryption and Decryption in detail.	10M
9. A. Compare the substitution method in DES and AES. Why do we need only one substitution	n table in
AES, but several in DES?	6M
B. What are the merits of Output-Feedback (OFB. as compared to Cipher Feedback (CFB. ?	4M
10. Write short notes on the following.	
A. OSI Security Architecture	2M
B. Block cipher principles	2M
C. Strength of DES	2M
D. Linear and Differential cryptanalysis	2M
E RC4	2M

UNIT 2

1. A. What is importance Chinese Remainder Theorem in cryptography? Explain.	5M
B. Explain various logarithms used for modular arithmetic operations with example.	5M
2. A. State and prove Chinese remainder theorem.	6M
B. Using CRT, solve for x for the following	
$x \equiv 2 \pmod{3}$; $x \equiv 3 \pmod{5}$; $x \equiv 2 \pmod{7}$	4M
3. A. Define some Elliptic curves on real numbers. Give the description of addition on those	elliptic
curves.	5M
B. In what way Diffie Hellman key exchange algorithm prone to man in the middle attack	?
Explain.	5M
4. A. Given 2 as a primitive root of 29, construct a table of discrete logarithms, and use it to s	solve the
congruence:	5M
B. Use Euler's theorem to find a number between 0 and 28 with congruent to 6 modulo 35	5. 5M
5. A. What is a primitive root? Find all the primitive roots of 25.	6M
B. What is the difference between an index and a discrete logarithm?	4M
6. Discuss the following related to Elliptic Curve Cryptography(ECC.	
A. ECC Encryption / Decryption and Security of ECC	5M
B. ECC Diffie Hellman Key Exchange	5M
7. A. Explain Fermat's theorem and Euler totient function with an example each.	5M
B. Discuss the following with respect to prime numbers	5M
i) Relatively prime numbers ii) Test for primality.	
8. A. What is an elliptic curve? Explain encryption in this context.	5M
B. Explain about the strength of RSA.	5M
9. A. Explain the RSA algorithm. Compute cipher text for M=88, p=17 and q=11.	
5M	
B. Differentiate Conventional encryption and public key encryption.	5M
10. Describe the following	
A. ELGamal cryptographic system	2M
B. Factorization	2M
C. Exponentiation and Logarithm	2M
D. Principles of public-key cryptography	2M
E. Elliptic Curve Arithmetic	2M

UNIT 3

1. A. Explain the process involved in message digest generation and processing of single block:	ın
SHA-512.	5M
B. What is Message Authentication code? Explain its functions and basic uses.	5M
2. A. Explain in detail Digital Signature Standard approach and its algorithm	5M
B. Explain requirements for Cryptographic Hash Functions.	5M
3. A. What is the purpose of digital signature? Explain its properties and requirements.	5M
B. Explain two different MACs based on block ciphers.	5M
4. A. What is Hash function? Explain different applications of cryptographic hash functions.	5M
B. Explain MACs based hash function with its design objectives and structure of the algorithm	n.5M
5. A. What is message authentication? List the authentication requirements.	6M
B. Compare the principal characteristics of secure hash functions.	4M
6. A. What are the services provided by digital signatures? Explain if the following are provided	6M
i) Source Authentication, ii) Data Integrity and iii) Source Non-Repudiation.	
B. What is Birthday Attack on Digital Signatures? Can it be performed by an 'Outsider'?	4M
7. A. List the generally accepted requirements for a cryptographic hash function. Explain each	5M
requirement.	
B. Explain Digital signature scheme (DSS) and Digital Signature Algorithm (DSA. in detail.	5M
8. Describe the steps in message digest generation in Secure Hash Algorithm in detail.	10M
9. A. What is the difference between weak and strong collision resistance?	
5M	
B. Describe the various modes of arbitrated digital signatures.	5M
10. Write short notes on the following	
A. Security of MACs	2M
B. Applications of cryptographic hash functions	2M
C. Message Authentication Codes	2M
D. DSS	2M
e) HMAC	2M

UNIT 4

1. A. Explain how authentication is performed in Kerberos.	5M
B. Enumerate the differences between Kerberos Version 4 and 5.	5M
2. A. Write note on PGP session keys, public/private key rings and passphrase keys.	5M
B. What are the similarities and differences between S? MIME and PGP?	5M
3. A. Give the format for X.509 certificate. How are users certificates obtained?	5M
B. Explain the authentication services provided by X.509.	5M
4. A. Explain how email messages are protected using S/MIME signing and encryption?	5M
B. What is Radix 64 format? What is its use in PGP?	5M
5. A. Explain key management and distribution in detail.	5M
B. Describe Remote user Authentication Principles	5M
6. A. Write and explain typical approaches used to distribute the symmetric using asymmetric	
encryption.	5M
B. Write and explain Client/ Server Authentication Exchange service in Kerberos version 4.	5M
7. A. What is Public Key certificate? Explain its usage with X.509 certificates.	5M
B. Write the general format of PGP Message. Explain the PGP message generation from User	A to
User B with no compression.	5M
8. A. Draw and explain the architecture model and management functions of Public Key-	
Infrastructure.	5M
B. Write and explain various PGP cryptographic functions and services in detail.	5M
9. A. Explain different approaches used for symmetric key distribution using symmetric-	
encryption.	5M
B. With a neat sketch explain overview of Message Exchanges in Kerberos version 5.	5M
10. Write short notes on the following	
A. PGP	
2M	
B. S/MIME	2M
C. Federal Identity Management	2M
D. Public Key Infrastructure	2M
e) Symmetric key distribution using Asymmetric encryption	2M

<u>UNIT 5</u>

1. A	A. What is the use of SSL protocol? Explain SSL record protocol operation with	
	SSL record format.	5M
В	8. What is the need for encapsulation of Security Payload? Write and explain different fields	
	of top level format and substructure of ESP packet.	5M
2. A	Write and explain TLS functions and alert codes of Transport Layer Security.	5M
В	Explain the scope of ESP encryption and authentication in tunnel mode.	5M
3. A	with a neat sketch explain the IPSec scenario and IPSec Services.	5M
В	8. Why Internet Key Exchange is used? Write and explain header and payload formats of it.	5M
4. A	. Draw and discuss the Architecture of IPSec	5M
В	8. What is the need to combine Security Associations? Explain basic combinations of Securit	ty
	Associations.	5M
5. A	. Explain ESP Header of IP Sec.	5M
В	Explain different Web security requirement.	5M
6. A	. Give the taxonomy of malicious programs. Define each one.	5M
В	3. What are the different types of viruses? How do they get into the systems?	5M
7. A	What is a firewall? What is the need for firewalls? What is the role of firewalls in protection	ng
	networks?	5M
В	3. What is a worm? Name some known worms.	5M
8. A	What is meant by stateful packet inspection? What are the advantages and disadvantages?	5M
В	s. Compare the features of host based IDS and network based IDS. Why, when and where to	use
	host based IDS?	5M
9. A	A. Explain Unix Password management.	5M
В	Explain Intrusion detection in detail.	
10.	Write short notes on the following	
	A. Firewall Configurations	2M
	B. Viruses	2M
	C. Trusted Systems	2M
	D. Worms	2M
	e) HTTPS	2M

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : CNS (13A05702) Course & Branch: B.Tech - CSE

Regulation: R13 Year & Sem: IV-B.Tech & I-Sem

UNIT - I

1. The protection afforded to an auto	_	* *	objectives
of preserving the integrity, availabili	ty, and of inform	ation system resources.	[]
A. Confidentiality	B. Conformity	C. Infirmity	D.All
2. The protection afforded to an objectives of preserving the resources.			
A. Conformity	B. Integrity	C. Infirmity	D.None
3. The protection afforded to an auto of preserving the integrity,, a		* *	objectives []
A. Availability	B. Liability	C. Maintainability	D.All
4. In NIST definition on Computer s	ecurity, the keywords are		[]
A. Confidentiality	B. Integrity	C. Availability	D.All
5 assures that systems w	ork promptly and service is no	ot denied to authorized users.	[]
A. Confidentiality	B. Integrity	C.Availability	D.None
6. Among which is additional concep	ots for CIA traid		[]
A. Authenticity	B. Accountability	C. Both A & B	D.None
7 is the property of b	being genuine and being able t	o be verified and trusted.	[]
A. Authenticity	B. Accountability	C. Both A & B	D.None
8. The more critical a component or	service, the higher is the level	of required.	[]
A. Confidentiality	B. Integrity	C. Availability	D.None
9. The security archite providing security.	ecture is useful to managers	as a way of organizing th	ne task of
A. OSI	B. ISO	C. Both A & B	D.None
10. The OSI security architecture foo	cuses on		[]
A. Security Attacks	B. Mechanisms	C. Services	D. All
11. Any action that compromises th	ne security of information ov	vned by an organization is	defined as
A. Security Mechanism	B. Security Attacks	C. Security service	D. None

		QUESTION BANK	2016
12. They are	types of security attacks		[]
A. 3	B. 2	C. 4	D. 5
13. Which kind of security a	ttacks are difficult to detect	?	[]
A. Passive attack	B. Active attack	C. Both A & B	D. None
14. A tak	es place when one entity pro	etends to be a different entity.	[]
A. Denial of service	B. Masquerade	C. Replay	D. None
15 divides th	nese services into five categor	ories and fourteen specific services.	[]
A. RFC 2828	B. X.800	C. RFC 2929	D. X.8000
16. How many authentication	n service are there?		[]
A. 2	B. 4	C. 5	D. 1
17 is the communications links.	ability to limit and control	the access to host systems and app	olications via
A. Access confidentialit	y B. Access Control	C. Data Integrity	D. None
		system or a system resource being according to performance specifica	
A. X.800	B. RFC 2828	C. Both A & B	D. None
19 treats availa	bility as a property to be ass	sociated with various security service	es. []
A. X.800	B. RFC 2828	C. Both A & B	D. None
20. A symmetric encryption	scheme has ing	gredients.	[]
A. 6	B. 4	C. 5	D. 7
21. The perfe	orms various substitutions at	nd transformations on the plain text.	[]
A. Secret text	B. Cipher text	C. Encryption algorithm	D. None
22. In Symmetric encryption	scheme cipher text depend	s on	[]
A. Plain text	B. Secret key	C. Both A & B D. Encrypti	on algorithm
23. The only amount of information to wo		efend against because the opponent	has the least
A. Secret text	B. Cipher text	C. Encryption algorithm	D. None
24. A involves into plaintext is obtained.	trying every possible key	until an intelligible translation of the	ne ciphertext
A. Cipher-text attack	B. Brute-force atta	ck C. Both A & B	D.None
25. The basic building block	s of all encryption technique	e is/are	[]
A. Substitution B. Tra	Insportation C. Both A	& B D. Substitution&T	Transposition
26. In technique a sequence of rows.	the plaintext is written dow	n as a sequence of diagonals and the	n read off as
A. Brute-Force techniqu	e B. Rail fence	C. Rail force	D. None
27. A is one that	encrypts a digital data strea	m one bit or one byte at a time.	[]
A. Stream cipher	B. Block cipher C. I	Both A & B D. Digital data str	ream cipher
ODVOTO OD A DUNA A METUA	V 0501DITV		
CRYPTOGRAPHY & NETWOR	K SECURITY	D;	age 7

28. A desirable property of any enc key should produce a significant cha			
	B. Avalanshe		
29. Timing attacks are related to		C	[]
A. DES algorithm		C. Both A & B	
30. The most significant advances in			[]
A. Integral crypt analysis			D. None
31. A loss of is the u	nauthorized disclosure of info	ormation.	[]
A. Integrity	B. Confidentiality	C. Availability	D. None
32. A loss of is the una	uthorized modification or des	truction of information.	[]
A. Integrity	B. Confidentiality	C. Availability	D. None
33. A loss of is the disruption	of access to or use of informa	ation or an information system	m. []
A. Integrity	B. Confidentiality	C. Availability	D. None
34 means verifyin the system came from a trusted sour	ce.	•	[]
A. Accountability	B. Authenticity	C. Both A & B	D. None
35supports non-repudiation,	deterrence, fault isolation, int	rusion detection and prevent	ion.[]
A. Accountability	B. Authenticity	C. Both A & B	D. None
36. The loss could be expected organizational assets, or individuals			•
A. Low	B. Moderate	C. High	D. None
37 authentication received data is as claimed.	in a connection less transfer	r, provides assurance that th	e source of
A. Data-Origin	B. Peer-entity	C. Data-based D. P	'eer-server
38. The prevention of unauthorized	use of a resource is called as		[]
A. Access-service	B. Access-Control C. Ac	cess-protection D. Access-F	Prevention
39. Which among is not one of the o	lata confidentiality		[]
A. Connection confidentiality		C. Connection less Confide	entiality
B. Selection -field confidentiali	ty	D. Traffic-Flow confidenti	ality
40. Proof that the message was sent	by the specified party is called	d	[]
A. Non-repudiation, origin	B. Non-repudiation,Destinat	ion C. Both A & B	D. None

<u>Unit-II</u>

1. The binary operations de	efined for integers are		[]	
A. Addition	B. Division	C. Both A & B	D. None		
2. The Euclidean algorithm	2. The Euclidean algorithm gives an efficient and systematic way to calculation of [
A. LCM	B. GCD	C. HCF	D. LCF		
3. A linear Diophantine equ	uation of to variables	is	[]	
A. $ax+by=c$	B. ax*by=c	C. ax/by=c	D. ax%by=c		
4. In a mod $n = r$, "r" is cal	led]]	
A. Remainder	B. Residue	C. Both A & B	D. None		
5. The congruent operator	is denoted by		[]	
A. #	B. ^	C. +	D. None		
6. The combination of the	set and the operations	applied to elements of the set is called	an[]	
A. Integral structure	B. Algebraic struc	ture C. Operational structure	D. All		
7. Which among the follow	ing are algebraic stru	cture?	[]	
A. Groups	B. Rings	C. Fields	D. All		
8. which among the follow	ing is Closure proper	ty	[]	
A. $c=a*b$	B. $a+(b+C) = (a+B)$. +c C. a*b=b*a	D. None		
9. A group is called a	group if the s	et has a finite number of elements.	[]	
A. Define	B. Finite	C. Infinite	D. All		
10. If a subgroup of a group can be generated using power of an element, the sub group					
is called			[]	
A. Symmetric sub-gro	up B. Associative sub	o-group C. Cyclic subgroup	D. None		
11 theorem	relates the order of a	group to the order of its subgroup.	[]	
A. Lagrange	B. Brute-force	C. Closure	D. Commutati	ive	
12. A is an algeb	oraic structure with 2	operations	[]	
A. Ring	B. Field	C. Both A & B	D. None		
13. The positive integers ca	an be divided into	groups.	[]	
A. 4	B. 3	C. 2	D. 5		
14. Exponentation and loga	arithm are	of each other	[]	
A. Similar	B. Inverse	C. Converse	D. Diverse		
15. Fast exponentation is p	ossible using the	method	[]	
A. Square-and-multipl	y B. Division-and –	multiply C. Addition-and-Subtraction	D. None		
16. The bit-operation comp	plexity of the fast expe	onential algorithm is	[]	
A. Polynomial	B. Binomial	C. Trivial	D. None		
17. A public-key encryption	on scheme has	ingredients.	[]	
A. 6	B. 4	C. 5	D. 3		
CRYPTOGRAPHY & NETWO	RK SECURITY		Page 9		

C. Elliptic curve cryptograph

D. None

		QUESTION	BANK 2016
35. Security mechanisms t	ypically involve		[]
A. Algorithm	B. Protocol	C. Both A & B	D. None
36. One of the most useful	results of number theory is	the theorem.	[]
A. Chinese remainder	B. Chinese quoti	ent C. Chinese divisor	D. None
37. Full form of DSA is			[]
A. Digital signal algor	rithm	B. Digital system a	algorithm
C. Digital similar algo	rithm	D. None	
38. Asymmetric encryption	n can be used for		[]
A. Confidentiality	B. Authentication	n C. Both A & B	D. None
39. Asymmetric encryption and an encryption algorithm		ext intotext using a	one of two keys
A. Plain,cipher	B. Cipher, Plain	C. Both A & B	D. None
40. The difficulty of attack number.	ring RSA is based on the dif	ficulty of finding	of a composite
A. Prime factors	B. Divisors	C. Factors	D. None

UNIT III

1. The kind of hash fund	ctions needed for security a	applications is referred to as a	hash function. []
A. Cryptographic	B. Cryptosysytem	C. Crypto	D. Cryptography	
2. Message	_ is a mechanism or servi	ce used to verify the integrity	of a message. []
A. Verification	B. Authentication	C. Protection	D. Server	
3. MAC refers to			[]
A. Method automatic fu	nction	B. Method automat	e function	
C. Method authentication	on function	D. Message authentication t	function	
4. MAC is also known a	ıs		[]
A. Key hash function		B. Keyed hash function		
C. Message automatic f	unction	D. Method authenti	cation function	
5. In the case of the digi	tal signature, the hash valu	ue of message is encrypted wit	th a user's_key []
A. Public	B. Private	C. Secret	D. Commo	n
6. Hash functions are co	mmonly used to create a _]]
A. One time passwordB	. One way password	C. One time code	D. One way code	
7. For a hash value h=H	(x), we say that x is the _	of h.	[]
A. Preimage	B. Postimage	C. Collison	D. Function	
8. which among followi	ng are security requiremer	nts for Cryptographic Hash fur	nction []
A. Variable output size	B. Efficiency	C. Post image resistant	D. Fixed input	size
9. A function that is coll	lision resistant is also	resistant]]
A. Preimage resistant B	. Second preimage resistar	nt C. Both A & B	D. None	
10. SHA is referred as _			[]
A. Security hash algorithm	hm	B. Secure ha	sh algorithm	
C. Secure has algorithm		D. N	Jone	
11. Any message auther	ntication or digital signatur	re mechanism has levels o	f functionality. []
A. 2	B. 3	C. 4	D. 5	
12. Among the followin	g which kind of attacks ca	an be identified in the context	of communication a	cross
a network.			[]
A. Masquarade	B. Disclosure	C. Content repudiation	D. Source modifica	ation
13. Denial of transmissi	on of message by source is	s called	[]
A. Source repudiation	B. Destination repud	diation C. Sequence mo	dification D. No	
14 is function	in which ciphertext of the	entire message serves as its a	uthenticator. []

A. Message encryption	B. Message decrypti	on	C. Hash function	D. None
15. The straightforward use of pub	lic-key encryption provi	des		[]
A. Authentication B. Pr	rotection	C. Security	D. Confiden	tiality
16. An authentication technique in	volves the use of a sec	ret key to gene	rate a small-fixed	block of data
known as				[]
A. Cryptographic checksum	B. MAC	C. Bo	th A & B	. None
17. In the equation $MAC = C(K,M)$	"K" is referred as			[]
A. Shared secret key	B. Input message	C. MAC fund	ction D	. None
18. In general MAC function is	function.			[]
A. One-to-one	B. Many-to-one	C. Or	ne-to-many	D. None
19. We can group attacks on MAC	s into categories.			[]
A. 3 B. 2		C. 4	D. None	
20. Which among is group of attack	ks on MAC			[]
A. Cryptograph B. C	ryptanalysis	C. Brute-For	ce attacks I	D. Both C & D
21. An ideal MAC algorithm will r	equire a cryptanalytic e	ffort th	e brute force attac	k []
A. Greater than or equal to	B. Less than or equal	to	C. Greater than	D. Less than
22. DAA is referred as				[]
A. Data analysis algorithm		B. Data authe	ntication algorith	n
C. Data authentic algorithm		D. Data autor	nate algorithm	
23. DAA is widely adopted in	sectors			[]
A. Government B. In	dustry C. Bo	th A & B		D. None
24. The CCM mode of operation w	as standardized to supp	ort the security	requirements of	[]
A. Computer networks		B. Wi	Fi wireless local a	rea network
C. Local area networks		D. No	ne	
25. The key algorithmic ingredient	s of CCM are the			[]
A. AES encryption algorithm		B. The	e CPR mode of op	eration
C. The CNAC authentication		D. No	ne	
26. Message authentication protect	s two parties who excha	nge message fi	om	_ []
A. Each other B. Any third	party	C. Both A &	B D. None	
27 must verify author	and the date and time of	of the signature		[]
A. Digital signature B. De	ata signature	C. Da	ta signal D.	Digital signal
28 must authenticate the	contents at the time of t	he signature.		[]
A. Digital signature B. Da	ata signature	C. Da	ata signal D.	Digital signal

		QU	ESTION BANK 2016
29. The digital signature	function includes the	function	[]
A. Verification	B. Authentic	eation C. Security	D. Checking
30. Which among the fo	llowing are types attacks _		[]
A. Known message attac			B. Key-only attack
C. Directed chosen mess	sage attack		D. All
31. Which among the fo	llowing are types of forger	ries	[]
A. Half break B.	. Universal forgery	C. Essential forgery	D. All
32. Digital signature mu	st be relatively to	produce.	[]
A. Difficult B.	. Complicated	C. Easy	D. Huge
33. The signature must b	be a pattern that	at depends on the message b	peing signed. []
A. Byte	B. Bit	C. Bite	D. Beat
33. Digital signature mu	st be relatively to	o recognize and verify the d	ligital signature. []
A. Easy	B. Difficult	C. Complicated	D. Huge
34. The e	encryption scheme involv	ves the use of the private	key for encryption and the
public key for decryption			[]
A. Egammal B.	. Elgamal	C. Elgammal	D. Egammal
35. The schnorr signatur	re scheme is based on	·	[]
A. Discrete logarithms	B. Discrete algorithm	ms C.Discreate algorithms	s D.Discreate logarithms
36. The DSA makes use	of the algorithm	m	[]
A. Secure Hash	B. Discrete	C. Brute-force	D. None
37. NIST stands for			[]
A. National institute of s	science and technology	B. National institute of st	tandards and technology
C. National informal soc	ial terminal	D. None	
38. The DSA can be pro-	vide		[]
A. Digital signature	B. Encryption	C. Key exchange	D. All
39. which among algor	ithms had high acceptan	nce due to the efficiency	advantage of elliptic curve
cryptography.			[]
A. ECDSA	B. NIST DSA	C. Both A & B	D. RSA-PSS DSA
40 must	be verifiable by third part	ties to resolve disputes.	[]
A. Data signals	B. Data signature	C. Data signs	D. None

Unit-IV

1. The strength of any cryptographic system rests with the	<i></i>	[]
A. Key distribution technique	B. Key distributed technique		
C. Key developed technique	D. None		
2 the term that refers to the means of delivery	ering a key to two parties who wish	to exch	ange
data without allowing others to see the key.		[]
A. Key distribution technique	B. Key distributed technique		
C. Key developed technique	D. None		
3. Communication between end systems is encrypted usin	g a temporary key, often referred		
to as a _ key		[]
A. Section B. Session	C. Master D. None		
4. Session keys are transmitted in encrypted form, using a	key	[]
A. Other session key B. Travel key	C. Master key D. None		
5. A nonce minimum requirement is it with e	each request	[]
A. Differs B. Equals	C. Compares D. None		
6 is a good choice for a nonce.		[]
A. A random number B. A counter C. A	time stamp D. A	All	
7. The more frequently session keys are exchanged, the m	ore they are.	[]
A. Risky B. Secure C. Co	omplicate D. None		
8. For connection oriented protocols, use session	on key for each new session.	[]
A. Same B. New C. Either A of	or B\ D. None		
9 key is used for general communication acr	coss a network	[]
A. Data-encryption B. PIN-encryption	C. File-encryption D. I	None	
10. Which among the following is group scheme name of	public keys?	[]
A. Public announcement	B. Publicly available direct	ctory	
C. Public-key authority	D. All		
11 scheme can be forged by any one		[]
A. Public announcement	B. Publicly availab	ole direc	ctory
C. Public-key authority	D. All		
12. A greater degree of security can be achieved by maint	aining a of public ke	ys. []
A) Public announcement	B. Publicly available direct	ctory	
C. Public-key authority	D. All		
13. Only the certificate authority can create and update ce	rtificates under scheme.	[]

A. Public key certifi	icate	B. Publi	c key authority
C. Both A & B		D. None	
14. X.509 is part of	the series of recomme	endation that define a direc	etory service. []
A. X.500	B. X.600	C. X.700	D. X.800
15. X.509 defines al	Iternative authentication protoc	cols based on the use of _	key certificates. []
A. Public	B. Private	C. Maste	er D. None
16. X.509 is based of	on the use of public-key	·	[]
A. Public key crypto	ography B. Digital signatures	s C. Both A & B	O. Private key cryptography
17. Which among th	ne following are elements of ce	ertificate format?	[]
A. Version	B. Serial Number	C. Issuer Number	D. Both A & B
18. The name of the	user to whom this certificate	refers is called as	name. []
A. Title	B. Subject	C. Versi	on D. User
19. In Public - key -	infrastructure CA refers to		[]
A. Certificate author	rity B. Certificate a	uthor C. Chared accord	untant D. None of the above
20 is a	generic term used to denote an	y method for storing certi	ficates and CRLs. []
A. CRL issuer	B. Repositor	c. CA	D. RA
21. there are	general methods of authe	enticating a user's identity	[]
A. 3	B. 5	C. 4	D. 1
22. General means of	of authenticating can be used _		[]
A. Alone	B. In combination	C. Both A & B	D. None
23. The simplest	attack is one in which the	opponent simply copies a	message and
reply later.			[]
A. React	B. Counter	C. Reply	D. None
24. one application	for which encryption is growing	ng in popularity is	_ []
A. e-mail	B. Electric mail	C. Both A & B	D. None
25. Kerberos is an/a	service		[]
A. Protection	B. Security	C. Authentication I	D. None
26. Among the follo	owing which are the requireme	ents of kerberos	_ []
A. Reliable	B. Secure	C. Scalable I	D. All
27. A full service ke	erberos environment consisting	g of a	[]
A. Server B. A	number of clients C	C. A number of application	servers D. All
28. Kerberos princip	oal's name consists of	parts	[]
A. 4	B. 3 C. 5	D. 2	
29. Kerberos provid	es a mechanism for supporting	g authentica	tion. []
CRYPTOGRAPHY & N	NETWORK SECURITY		Page 16

A. Outer realm	B. Inner Realm	C. Both A & B	D. None	
30. Kerberos version 5	was developed to overcome	area(s). []	
A. Environmental shor	rt comings B. En	vironmental deficiencies		
C. Technical deficienc	ies D. Bo	oth A & C		
31. Services provided	by a federated identity mana	agement system include]
A. Point of contract	B. SSO Protocol server	C. Authorization	D. All	
32. A principal is	holder		[]
A. Information	B. Command C. Pro	ogram D. Identity		
33. PGP provides a	service that can be used for	or electronic mail and file st	orage applications. []
A. Confidentiality	B. Authentication	C. Both A & B	D. None	
34. EP is notation for			[]
A. Public key encrypti	on B. Private key encry	ption C. Both A & B	D. None	
35. is notation for	in PGP		[]
A. Concatenation	B. Addition	C. Or	D. And	
36 canr	not transmit executable file o	or other binary objects.	[]
A. SMTP	B. MIME	C. S/MIME	D. None	
37 is us	sed to identity MIME entities	s uniquely in multiple conte	nts []
A. Content-ID	B. Content-Name	C. Entity-ID	D. MIME-ID	
38. S/MIME provides	follwing funcions		[]
A. Envelope data	B. Signed data	C. Both A & B	D. Unsigned	
data				
39. S/MIME secures a	MIME entity with a		[]
A. Signature	B. Encryption	C. Both A & B	D. None	
40. In S/MIME certific	cate processing A user's pub	olic key must be registered w	ith a certificate authority	
in order to receive an	key certificate	e	[]
A. X.507 public	B. X.507 private	C. X.509 public	D. X.509 private	
-	_	_	_	

<u>Unit-V</u>

1security provides 6	end-to-end security services	for applications	[]
A. transport layer	3. application layer	C. network layer	D. physical layer
2. SSL stands for			[]
A. server socket layer	B. socket server layer	C. socket server	D. Secure Sockets layer
3. TLS stands for			[]
A. transport layer B. Transpor	rt Layer Security C. transpo	rt level security D.	transport layer services
4. HTTP stands for			[]
A. hypo transfer text protocol transfer protocol		• 1	ext transfer C. Hyper text ext translates protocol
5is designed application layer	ed by provide security and co	ompression services	to data generated from the
A. SSL	B. TCP	C. ISP	D. URL
6. SSL divides the data into bl	ocks of 224 bytes		[]
A. Framing	B. Message integrity	C. Fragmenta	tion D. Compression
7. A leader is added to the encr		[]	
A. compression	B. message in	ntegrity C. f	raming D. Framing
8. How many SSL protocols			[]
A. 4	B. 1	C. 5	D. 6
9. SSC protocols are			[]
A. Handshake	B. Alert	C. Both A&	D. none
10 for reporting e	rrors and abnormal condition	ns	[]
A. Handshake protocol	B. Record pro	tocol C. A	Alert protocol D. none
11. A collections of protocols			[]
A. transport layer	B. IP Security	C. session layer	D. network security
12.IPSec has modes			[]
A. transport mode	B. tunnel mode	C. Both A	&B D. none
13. Transport mode protects th	e network layer payload		[]
A. Tunnel mode	B. transport mode	C. all the a	bove D. none
14 is a very impo	ortant aspect of IPSec		[]
A. Security Association	B. standard archive	C. protocol	D. danger
15. A set of SAs that can be co	llected into a database		[]

A. security association	B. Security Associa	tion Database C. se	curity D. database
16.Host that is using the IPSec	c protocol needs to keep		[]
A. SP	B. SA	C. SAD	D. SPD
17is a protocol de	esigned to create both inbou	nd and outbound Securi	ty Associations []
A. SP	B. IKE	C. SAD	D. SPD
18)Thepro	tocol is designed to carry m	essages for the IKE exc	hange []
A. SP	B. SAD	C. ISAKMP	D. SPD
19are actually des	signed to carry messages		[]
A. proposal	B. transform	C. hash	D. payloads
20. which one used for starting	g the negotiation		[]
A. SA	B. none	C. Hash	D. Delete
21 carriers one mo	ore SA that sender has delet	ed	[]
A. SA	B. none	C. Delete	D. hash
22.which is the one used to sh	ow the end of the layout		[]
A. SA	B. delete	C. hash	D. NONE
23carriers data gene	erated by a hash function		[]
A. SA	B. Hash	C. delete	D. none
24.It defines vendor-specification	tion extensions		[]
A. SA	B. hassh	C. delete	D. Vendor
25 initiates the m	nechanism of negotiation		[]
A. SA payload	B. proposal	C. Proposal Payload	D. payload
26.Payload is used to negotiat	e security parameters		[]
A. SA payload	B. proposal	C. payload	D. transform payload
27 actually carries a	attributes of the SA negotian	tion	[]
A. SA Payload	B. Transform payload	C. proposal	D. payload
28. It is used in those exchange	es that need to send prelimi	nary keys that are used	for creating
section keys			[]
A. Key-Exchange payload	B. SA payload	C. transform payload	D. payload
29 contains data g	generated by the hash functi	on as described in the II	KE changes []
A. SA payload	B. payload C. t	ransform payload	D. Hash payload
30 payload contains of the messages state	s data generrated by applyir	ng the digital signature p	rocedure over some part
A. SA	B. Signature	C. transform	D. hash
CRYPTOGRAPHY & NETWORK	SECURITY		Page 19

		QUES ⁻	TION BANK 2016			
31. These programs on the other hand, cannot run independently [
A. Logic bombs	B. Spyware	C. Viruses	D. Trojans			
32is a malicious	program		[]		
A. Spyware	B. viruses	C. Trojans	D. Logic Bombs			
33.Logic bombs has typical	ly two parts		[]		
A. payload	B. trigger	C. all the above	D. none			
34are malicious program that performs some harmless activities in addition to som malicious						
A. payload	B. Trojans	C. trigger	D. none			
35 is a software to collect information from a computer and transmit it to another computer						
			[]		
A. Spyware	B. payload	C. trigger	D. trojans			
36have much si	milarity with spywares		[]		
A. payload	B. Adwares	C. trigger	D. none			
37.A is a single	e point of defense between tw	o networks	[]		
A. payload	B. adwares	C. trigger	D. Firewall			

38.______ is one of the foremost firewall technologies that analyze network traffic at the transport

C. firewalls

C. Proxy

C. SPD

B. Packet Filters

B. packet filters

40.An _____ may only detect and warm about security violations

B. SP

39. Services do not allow direct connection between the real service and the user

protocol layer

A. IDS

A. application layers

A. application layers

]

]

[

D. circuit level firewalls

D. trigger

D. SAD

OBJECTIVE - ANSWERS

Unit	1	Unit	2	Unit	3	Unit	4	Unit	5
1	A	1	В	1	A	1	A	1	А
2	В	2	В	2	В	2	A	2	D
3	A	3	A	3	D	3	В	3	В
4	D	4	В	4	D	4	С	4	С
5	С	5	D	5	В	5	A	5	А
6	С	6	В	6	В	6	A	6	С
7	D	7	D	7	A	7	В	7	D
8	С	8	A	8	В	8	A	8	А
9	A	9	В	9	В	9	A	9	С
10	D	10	C	10	В	10	D	10	С
11	A	11	A	11	A	11	A	11	В
12	В	12	A	12	В	12	В	12	С
13	A	13	В	13	A	13	A	13	В
14	В	14	В	14	A	14	A	14	А
15	В	15	A	15	D	15	a	15	С
16	A	16	A	16	C	16	C	16	D
17	В	17	A	17	A	17	D	17	В
18	С	18	В	18	В	18	В	18	С
19	С	19	C	19	В	19	A	19	D
20	С	20	C	20	D	20	В	20	А
21	С	21	В	21	A	21	C	21	С
22	В	22	A	22	В	22	C	22	D
23	В	23	D	23	С	23	С	23	В
24	В	24	A	24	В	24	A	24	D
25	D	25	В	25	A	25	C	25	С
26	В	26	С	26	В	26	D	26	А
27	A	27	D	27	A	27	D	27	В
28	A	28	A	28	A	28	В	28	A
29	В	29	A	29	В	29	В	29	D
30	В	30	D	30	D	30	D	30	В
31	В	31	В	31	В	31	С	31	С
32	A	32	A	32	С	32	D	32	D
33	C	33	В	33	В	33	С	33	С
34	В	34	В	34	A	34	A	34	В
35	В	35	С	35	В	35	С	35	A
36	A	36	A	36	A	36	A	36	В
37	A	37	A	37	В	37	A	37	D
38	В	38	С	38	A	38	С	38	В
39	С	39	В	39	D	39	С	39	C
40	A	40	A	40	D	40	C	40	A

Prepared by: Mr. A.Dhasaradhi, Mr.P.Balaji,