

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PROBABILITY&STATISTICS(18HS0835) Year &Sem: II-B.Tech&I-Sem Branches: MECH,CSE,CS&IT Regulation: R18

<u>UNIT –I</u>

1. a) If
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{4} P(A \cap B) = \frac{1}{8}$ then $P(A \cup B)$.

b) If
$$P(A^c) = \frac{3}{8}$$
, $P(B^c) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$ then find $P\left(\frac{A}{B}\right)$. [2 M]

c) State Bayes theorem.

d) If the Probability density of a random variable is given by $f(x) = \begin{cases} k(1-x^2), \text{ for } 0 < x < 1\\ 0, \text{ elsewhere} \end{cases}$

find the value of k.

e) A random variable X has the following probability function

X	1	2	3	4	5	6	7	8
P(x)	1/36	2/36	3/36	4/36	5/36	6/36	7/36	8/36
CD (()							

find the value of $P(x \le 2)$

 a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, find the Probability that (i)3 boys are selected (ii)exactly 2 girls are selected [4 M]

b) Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability that the sum is even if (i) The two cards are drawn together. (ii) The two cards drawn one after other with replacement.[6 M]

3. a) Three students A,B,C are in running race. A and B have the same Probability of winning and each is twice as likely to win as C. Find the Probability that B or C wins [5 M]

b) Determine (i) $P(B_A)$ (ii) $P(A_B^c)$ if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$.

P(A∪B) = ¹/₂. [5 M]
4. a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town.

- i) If he has brown hair, what is the probability that he has brown eyes also?
- ii)If he has brown eyes, determine the probability that he does not have brown hair?
- b) The probability that students A, B, C, D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If

all of them try to solve the problem, what is the probability that the problem is solved. [4M] 5. Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6.Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$ [10 M]

Page 1

[6 M]

[2 M]

[2 M]

[2 M]

[2 M]

[10 M]

[10 M]

[5 M]

- 6. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy
 [10 M]
- 7. Two dice are thrown. Let X assign to each point (a,b) in S the maximum of its numbers i.e, X(a,b)= max (a,b). Find the probability distribution. X is a random variable with X(s) ={1,2,3,4,5,6}. Also find the mean and variance of the distribution.
- 8. A random variable X has the following probability function

Χ	0	1	2	3	4	5	6	7
P(x)	0	Κ	2K	2K	3K	K ²	$2K^2$	$7K^2+K$

Determine (i) K (ii) Evaluate $P(X \ge 6)$ and P(0 < X < 5) (iii) if $P(X \le K) > 1/2$, find the minimum value of K (iv) variance.

9. A) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{n}$ for x = 1, 2, ..., n.

b) If a random variable has a Probability density f(x) as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0\\ 0, & \text{for } x \le 0 \end{cases}$

Find the Probabilities that it will take on a value (i) Between 1 & 3 (ii) Greater than 0.5 [5 M]

10. Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$. Find the mean,

mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$. [10 M]

U	N	II	Т	-]	\mathbf{I}	

	<u>UNIT-II</u>	
1.	a) Define Binomial distribution.	[2 M]
	b) A fair coin is tossed six times. Find the Probability of getting four heads.	[2 M]
	c) Define Poisson distribution.	[2 M]
	d) If a bank received on the average 6 bad cheques per day, find the probability that it will received	/e
	4 bad cheques on any given day.	[2 M]
	e) Define Normal distribution.	[2 M]
2.	a) Derive mean and variance of Binomial distribution.	[6 M]
	b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5	
	Chosen at random (i) one is defective (ii) $p(1 < x < 4)$	[4 M]
3.	a) Fit a Binomial distribution to the following frequency distribution:	[8 M]
	x 0 1 2 3 4 5	
	f 2 14 20 34 22 8	
	b) The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$. Find $p(X \ge 1)$.	[2M]
4.	a) Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b) 5	5
4.	girls(c) either 2 or 3 boys. Assume equal probabilities for boys and girls.	[6M]
	b) Two dice are thrown five times. Find the probability of getting 7 as sum i) at least once	
	(ii) $p(1 < x < 5)$	[4M]
5.	a) Derive mean and variance of Poisson distribution.	
5.	b) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective	[6 M]
	(ii) $p(1 < x < 8)$ In a sample of 100	[4 N/]
	- ()	[4 M]
6.	a) Fit a Poisson distribution to the following data $x ext{ 0 } 1 ext{ 2 } 3 ext{ 4 } 5 ext{ Total}$	[8 M]
	b) If the mean of a Poisson distribution is 1.8 then find $p(X > 1)$.	[2M]
7.	a) An insurance agent policies of 5 men all of identical age and good in health. The probability	
	that a man of this age will be alive 30 years is $2/3$. Find the probability that in 30 years.	
	(i) At least one man (ii) Almost three will be alive	
	[6M]	
	b) If X is a Poisson variate such that $3P(X = 4) = \frac{1}{2}P(X = 2) + p(X = 0)$,	
	find (i) the mean (ii) $P(X \le 2)$	[4 M]
8.		[10 M]
9.	Find the mean and variance of a Normal distribution in which 7% of items are under 35	
2.		[10 M]
10	. In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming	
	distribution to be normal find (i) how many students score between 12 and 15. (ii) How many students	
		[10 M]
		-

UNIT-III

 a) The weigh Find arith b) Find the s c) Obtain m d) Write the e) Write the 2. a) Find arith 	metic m median o ode of th formula	hean of v of the fo he value as for co as for the	weight of llowing s 10,12,1 prrelation e lines of	competi values 26 5,20,12, , rank co regressio	tors. 5, 8, 6 16,18 rrelat on X	,12,1 ,15,1 ion on Y	5,32. 2,10,10	5,20,12 on X.	2,24.				[2M] [2 M] [2 M] [2 M] [2 M] [2 M]
Marks	10-	-20	20	0-30	3	30-40)	40-5	50		50-60		
frequer	icy 5		8		2	25		22			10		_
b) Find the me		5 2	8 8	11 12		4	17 10		20 6		23 3		[5M]
3. a) Find the m	nedian to	o the fol	lowing d	ata									[5M]
Class in frequen		40-3	50	50-60 12		60- 23	-70	70 8	-80		80-90 2)	
b) Find arithm	etic me	an to th	e follow	ing data									[5M]
x		1	2)	3	;		4		5			
f		5	8		1	0		12		6			
4. a)Find mode				20.00		0.40		10.50					[5M]
	0-10	10-	20	20-30		<u>80-40</u>		40-50		50-60)	60-7 7	0
F b) The first fou Calculate 5. Compute Ka	mean, v	ariance,	β_1 and	β_2 of the	the v distr	ibuti	5 of the		bles ar				[5M] [10M]
Class intervals	0-10	10-20	20-30	30-40	40-3	50 5	50-60	60-70	0 70-	-80	80-9	0	90-100
frequency	2	6	11	20	40		75	45	25		18		8

6. Compute the first four central moments to the following data and also find Sheppard's correction, β_1 and β_2 [10M]

$P_1 \longrightarrow P_2$											
Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70]			
intervals											

Dept. of Mechanical Engineering Probability& Statistics

Page 4

Trec	juency 2)	8		12		40	20	15	5	3	
nee	uency 2		0		12		40	20	1.)	5	
a)Ca	lculate co	rrelatio	on coef	fficie	nt to the	follow	ing data					[
X	10	15	12		17	13	16	24	14	22	20	
Y	30	42	45		46	33	34	40	35	39	38	
01			1		CC· •	C .1	C 11 ·					r
Obt X	tain the ra	nk cor 60	$\frac{1}{72}$		62	for the	tollowing 40	g data : 39	52	30		[
$\frac{\Lambda}{Y}$	62	78	65		70	38	54	60	32	30		
1	02	70	05		70	50	54	00	52	51		
a)Tei	n competi	tors in	a mus	ical to	est were	ranked	by the the	hree judg	es A,B a	nd C in t	he follow	ving
ord	ler:				<u> </u>		-					_ [
Rar	nks by A	1	6	5	10	3	2	4	9	7	8	
	nks by B	3	5	8	4	7	10	2	1	6	9	
Rar	IKS UY D	-		-								
Rar sing Com If th Reg	rank corr rank corr romon likin e two line gression o	6 elation ngs in 1 es of re f X on	music. egressio Y. Fin	9 icient on are	e 4X-5Y nd σ_y w	X+30=0 hen σ_x	and 20X = 3	-9Y-107	-			ne of [5
Rar Sing Com If th Reg	nks by C rank corr nmon likin e two line	6 elation ngs in 1 es of re f X on	n coeffi music. egressio Y. Fin	9 icient on are	method e 4X-5Y nd σ_y w	l, discu Z+30=0 hen σ_x	ss which and 20X = 3	pair of j	udges has	the near	est appro	ne of
Rar Sing Com If th Reg a) Ot X	rank corr nmon likin e two line gression o otain the r	6 elation ngs in 1 es of re f X on ank co 64	n coeffi music. egressio Y. Fin	9 icient on are od r ar on co	method e 4X-5Y nd σ_y w	l, discu Z+30=0 hen σ_x	ss which and 20X = 3	pair of j	udges has	the near	est appro	ne of [5
Rar Sing Com If th Reg a) Ob	nks by C rank corr nmon likin e two line gression o ptain the r	6 elatior ngs in 1 es of re f X on rank co	n coeffi music. egressio Y. Fin prrelatio	9 icient on are od r an on co	the method e 4X-5Y nd σ_y w efficien	I, discu X+30=0 hen σ_x t for the	ss which and $20X = 3$ followin	pair of ju -9Y-107 ng data :	udges has =0 which	of these	est appro	ne of [5
Rar sing Com If th Reg a) Ob X Y	rank corr nmon likin e two line gression o otain the r 68 62	6 elation ngs in 1 es of re f X on ank co 64 58	a coeffi music. egressio Y. Fin prrelation 75 68	9 icient on are on co	method e 4X-5Y nd σ_y w efficien 50 45	1, discu 7+30=0 hen σ_x t for the 64 81	ss which and 20X = 3 e followin 80 60	pair of ju -9Y-107 ng data : 75 68	udges has =0 which	of these	est appro	ne of [5
Rar Sing Com If th Reg a) Ob X Y	rank corr nmon likin the two line gression of tain the r 68 62 nd two re	6 elation ngs in 1 es of re f X on ank co 64 58 gressio	n coeffi music. egressic Y. Fin prrelation 75 68 on equa	9 icient on are on co	method e 4X-5Y nd σ_y w efficien 50 45 s from th	1, discu 7+30=0 hen σ_x t for the 64 81 ne follow	ss which and 20X = 3 followin 80 60 wing data	pair of ji -9Y-107 ng data : 75 68 a :	udges has =0 which 40 48	of these	est appro	ne of [5
Rar Sing Com If th Reg a) Ot X Y b) Fi X	rank corr rank corr rank corr mon likin e two line gression o otain the r 68 62 nd two re 10	6 elation ngs in 1 es of re f X on ank co 64 58 gressio 25	n coeffi music. 2gressio Y. Fin orrelatio 75 68 0n equa 34	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 from th 42	1, discu 7+30=0 hen σ_x t for the 64 81 ne follow 37	ss which and 20X = 3 followin 80 60 wing data 35	pair of ju -9Y-107 ng data : 75 68 a : 36	udges has =0 which 40 48 45	of these	est appro	ne of [5
Rar sing Con If th Reg λ) Of X Y S) Fi X Y	rank corr nmon likin e two line gression o otain the r 68 62 nd two re 10 56	6elatiorngs in 1es of ref X onank co6458gressic2564	n coeffi music. Y. Fin orrelation 75 68 0n equa 34 63	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 s from th 42 58	I, discu X+30=0 hen σ_x t for the 64 81 he follow 37 73	ss which and 20X = 3 e followin 80 60 wing data 35 75	pair of junction $rac{1}{100}$	40 40 48 45 77	s the near of these 55 50	est appro is the lin	ne of [5 []
Rar sing Con If th Reg λ) Of X Y S) Fi X Y	rank corr rank corr rank corr mon likin e two line gression o otain the r 68 62 nd two re 10	6elatiorngs in 1es of ref X onank co6458gressic2564	n coeffi music. Y. Fin orrelation 75 68 0n equa 34 63	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 s from th 42 58	I, discu X+30=0 hen σ_x t for the 64 81 he follow 37 73	ss which and 20X = 3 e followin 80 60 wing data 35 75	pair of junction $rac{1}{100}$	40 40 48 45 77	s the near of these 55 50	est appro is the lin	ne of [5 []
Rar sing Con If th Reg λ) Of X Y S) Fi X Y	rank corr nmon likin e two line gression o otain the r 68 62 nd two re 10 56	6elatiorngs in 1es of ref X onank co6458gressic2564	n coeffi music. Y. Fin orrelation 75 68 0n equa 34 63	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 s from th 42 58	I, discu X+30=0 hen σ_x t for the 64 81 he follow 37 73	ss which and 20X = 3 e followin 80 60 wing data 35 75	pair of junction $rac{1}{100}$	40 40 48 45 77	s the near of these 55 50	est appro is the lin	ne of [5 []
Rar sing Con If th Reg a) Of X Y \overline{X} Y a) C	rank corr rank corr mon likin e two line gression of otain the r 68 62 nd two re 10 56 Calculate th	6 elation ngs in 1 es of re f X on ank co 64 58 gressio 25 64 ie corre	n coeffi music. 2gressid Y. Fin orrelatio 68 0n equa 34 63 elation c	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 s from th 42 58 cient for	1, discu X+30=0 hen σ_x t for the 64 81 ne follow 37 73 the follow	ss which and 20X = 3 e followin 80 60 wing data 35 75 owing heig	pair of junction $rac{1}{2}$ pair of junctio	udges has =0 which 40 48 45 77 ches) of fa	s the near of these 55 50	est appro is the lin	ne of [5 []
Rar Sing Com If th Reg a) Ob X Y b) Fi X Y	rank corr nmon likin e two line gression o otain the r 68 62 nd two re 10 56	6elatiorngs in 1es of ref X onank co6458gressic2564	n coeffi music. Y. Fin orrelation 75 68 0n equa 34 63	9 icient on are on co ations	method e 4X-5Y nd σ_y w efficien 50 45 s from th 42 58	I, discu X+30=0 hen σ_x t for the 64 81 he follow 37 73	ss which and 20X = 3 e followin 80 60 wing data 35 75	pair of junction $rac{1}{100}$	40 40 48 45 77	s the near of these 55 50	est appro is the lin	

<u>UNIT –IV</u>

			-	UNIT-IV	<u>/</u>				
1. a) write norm	al equation	ns to $y = a$	ax+b						[2M]
b) Write norr	nal equatio	ons to $y = a$	$ax^2 + bx +$	с					[2M]
c) Define par	ameters sta	atistics							[2M]
d) Define Nu			ative hypo	thesis.					[2M]
					nce inte	erval fo	r pop	ulation mean μ .	[2M]
2. a)By method	of least sq	uares fit a	straight li	ne to the f	followi	ng data			[5M]
X	1	2	3		4	5			
У	14	27	40	0	55	68			
b) Fit a secon	d degree p	olynomial	to the fol	lowing da	ta by n	nethod	of lea	st squares	[5M]
x 0	1 2	3	4						
y 1		.3 2.5	6.3						
$2 \rightarrow E^{i}$	- 1- 4- 41	1-4	1 1						[~]) (]
3. a) Fit a parab $\sqrt{\frac{1}{2}}$	$\frac{1}{1}$	2	3	4	5	·	1		[5M]
X V	1 10	12	8	4		4			
y	10	12	0	10	1	+			
b) Obtain a re	elation of th	he form y	$=ab^x$ for	the follow	ving da	ata by n	nethoo	d of least squares	[5M]
X	2	3	4	5	6				
У	8.3	15.4	33.1	65.2	12	27.4			
4. a) Find the cu	rve of best	t fit of the	type $y = a$	ae^{bx} to the	follow	ing data	a by r	nethod of least squ	ares
·			VI V			U	2	1	[5M]
Х	1	5	7	9	12				
У	10	15	12	15	21				
b) Fit a straig	ht line $y =$	ax+b for	r the follov	ving data					[5M]
		7	0 0		0 0				
X V	6 7 5 5		8 8 5 4			$\frac{9}{3}$ $\frac{1}{3}$	0		
5. a) Fit a $y = a$			-	-					[5] 1]
X	1	2		4	6]		[5M]
y		6 4		2	2				
b) Fit a secon	d degree p	olynomial	to the fol	lowing da	ta by n	nethod	of lea	st squares	[5M]
Х	0	1	2	3	4				
У	1	5	10	22	38	8			
the sample is b) The means respectively. 2.5 inches? 7. a) It is claime	40.Test will of two lar Can the sa	hether the ge sample mples be r ndom samp	sample ha s of sizes egarded a ple of 49 t	s come fr 1000 and s drawn fr tyres has a	om a p 2000 n com the	opulation nember e same p life of	on wi s are popul 15200	67.5 inches and 68 ation of standard d) km. This sample	[5M] .0 inches eviation [5M] was
Significant			nican is I	US I SUKIIIS		anualU	uevia	tion of 1200 km. T	[5M]

Dept. of Mechanical Engineering Probability& Statistics

Page 6

b) Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make a large sample test to test the Significance of the difference between the means. [5M]

	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

8. a) In a random sample of 125 cool drinkers 68 said they prefer thumsup to pepsi. Test thus null hypothesis P = 0.5 against the alternative hypothesis is P > 0.5 [5M]

b) On the basis of their total scores, 200 candidates of a civil service examination are divided in to two groups, the upper 30% and the remaining 70%.consider the first question of the examination. Among the first group,40 had correct answer, where as among the second group, 80 had correct answer. On the basis of these results, can one conclude that the first question is not good at discriminating ability of the type being examined here? [5M]

9. a) A die was thrown 9000 times and of these 3220 yielded a 3or 4. Is this consistent with the hypothesis that the die was unbiased?

b) In two large populations, there are 30%, and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations .

10. a) A random sample of size 50 has standard deviation 11.8 drawn from a normal population. can we assume that the sample has been drawn from the population with S.D 10. [5M]
b) Two random samples of sizes 100 each are drawn from two populations with the standard deviations 2.823 and 1.548. Test the significance difference between the sample standard deviations, if the population standard deviation is 2. [5M]

Dept. of Mechanical Engineering Probability& Statistics

[5M]

UNIT-V

1. a) Define degrees of freedom.

b) Define Student's t-test.

c) Write the formula for Paired t-test.

- d) Write the formula for Student's t-test for difference of means.
- e) Define Chi-square test.
- 2. a) A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard. [5M]
 b) A pair of dice are thrown 360 times and the frequency of each sum is indicated below: [5M]

<i>j</i> / <i>X</i> pair of the are thrown 500 times and the nequency of each sum is indicated below. [5,w]												
Sum	2	3	4	5	6	7	8	9	10	11	12	
Frequency	8	24	35	37	44	65	51	42	26	14	14	
TTT 11			. .			0.1 1	•		0.051	1 0 1		

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significant?

3. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows: [10M]

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate F- test.

- 4. A random sample of 10 boys had the following I.Q's : 70,120,110,101,88,83,95,98,107 and 100
 - a) Do these data support the assumption of a population mean I.Q of 100? [10M]

b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie.

5. a) Blood pressure of 5 women before and after intake of a certain drug are given below

[5M]

[2M]

[2M]

[2M]

[2M]

[2M]

Before	110	120	125	132	125
After	120	118	125	136	121

Test whether the significant change in blood pressure at 1% level of significance.

- b. In one sample of 8 observations the sum of the squares of deviations of the sample values from the sample was 84,4 and in the other samples of 10 observations it was 102.6. Test whether this difference is significant at 5% level [5M]
- 6. Two random samples reveal the following results:

Sample	Size	Sample Mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

7. The nicotine in milligrams of two samples of tobacco were found to be as follows.

Sample A	24	27	26	23	25	
Sample B	29	30	30	31	24	36

Can it be said that the two samples have come from the same normal population.

8. a) A die is thrown 264 times with the following results. Show that the die is biased. $(\psi^2 = 11.07 \text{ at } 5 \text{ d.f } \& 5\% \text{ L.S})$

Dept. of Mechanical Engineering Probability& Statistics

[10M]

[10M]

[5M]

Page 8

Number	1	2	3	4	5	6
on the die						
Frequency	40	32	28	58	54	52

b) Scores obtained in a shooting competition by 10 soldiers before and after intensive training are given below: [5M]

Before	67	24	57	55	63	54	56	68	33	43
After	70	38	58	58	56	67	68	75	42	38

Test whether the intensive training is useful at 0.05 level of significance.

- 9. a) Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively.
 - b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of the worker ($\psi^2 = 3.84$ at 1d.f) [5M]

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

10.a) Samples of two types of electrical light blubs were tested for length of life and following data were obtained [5M]

	Type I	Type II
Sample numbers	8	7
Sample mean	1234 hrs	1036 hrs
Sample S.D	36 hrs	40 hrs

Is the difference in the means sufficient to warrant that type I is superior to type II regarding length of life

b) The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period. [5M]