SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 ## **QUESTION BANK (DESCRIPTIVE)** **Subject with Code :** Compiler Design (16CS524) Course & Branch: B. Tech - CSE Year &Sem: III B.Tech& II-Sem **Regulation:** R16 ## **UNIT-1** 1. How many phases are there in a compiler? Explain each phase in detail? [L2, 10M] | 2.a) Describe the role of lexical analysis in compiler design? | [L1, 5M] | | |--|------------|--| | b) Explain Input Buffering with simple examples? | [L2, 5M] | | | 3. Explain about Language Processor in compiler Design? | [L2, 10M] | | | 4. Explain the following terms | | | | a) Specification of Tokens | [L2, 4+6M] | | | b) Recognition of Tokens | | | | 5.a)Explain the Structure of Compiler? | [L2, 5M] | | | b) What is the need for separating lexical analysis and syntax analysis? | [L2, 5M] | | | 6. Explain LEX Tool with an Lex Programme? | [L1, 10M] | | | 7.Write short notes | [L6, 5+5M] | | | a) pass and phases of a compiler | | | | b) Bootstrapping | | | | 8. How to design the compiler by using the source program position:=intial+rate*60.[L2, 10M] | | | | 9. Write short notes | [L6, 5+5M] | | | a) Application of compiler technology | | | | b) Specification of Tokens | | | | a)List the various phases of a compiler. | [L1, 2M] | | | b)Differentiate tokens, patterns, and lexeme. | [L4, 2M] | | | c) Differences between compiler and Interpreter. | [L1, 2M] | | | d)Define Regular Expressions and Regular Grammar. | [L1, 2M] | | | e) List the various error recovery strategies for a lexical analysis. | [L1, 2M] | | | | | | **COMPILER DESIGN** Page 1 ## UNIT-2 1.a) Construct the recursive decent parser for the following grammar? [L4, 5M] $E \rightarrow E + T/T$ T-> T*F/F $F \rightarrow (E)/id$ b) Explain about Left factoring and Left Recursion with an examples? [L2, 5M]2. Define augmented grammar? Construct the LR(0) items for the following Grammar? S->L=R[L1, 10M] S->RL->*R L->id R->L3. Calculate FIRST and FOLLOW for the following grammar? [L3, 5M]a) $E \rightarrow E + T/T$ T-> T*F/F $F \rightarrow (E)/id$ b) S->xABC [L3, 5M]A->a|bbD $B->a|\varepsilon$ C->b| ε D->c| ε 4. Construct Predictive Parse Table for the grammar E->E+T/T,T->T*F/F,F->(E)|id and parse the string id+id*id. [L3, 5M]5. Perform Shift Reduce Parsing forthe following i) S->(L) | a L->L,S|S input string: (a,(a,a)) input string (id*id+id) ii) $E \rightarrow E + E / E + E / (E) / id$ [L3, 5M][L3, 10M] 6. Construct CLR Parsing table for the given grammar S->CC $C \rightarrow aC/d$ 7. Consider the grammar [L3, 10M] S->AB|ABad A->d $E \rightarrow b$ D->b| ε B->c **COMPILER DESIGN** Page 2 Construct the predictive parsing table. Show that the given grammar is LL(1) or not | 8. Consider the grammar S->xABC A->a bbD B->a ε C->b ε D->c ε Construct predictive parsing table for the given grammar. | [L3, 10M] | | |---|------------------------|--| | 9. Perform Shift Reduce Parsing for the input string using the grammar. | [L4, 5+5M] | | | S->(L) a | , , | | | L-> L , S S | | | | a) $(a,(a,a))$ | | | | b) (a,a) | | | | a) Define LL(1)? | [L1, 2M] | | | b) Differences between SLR,CLR, LALR parsers? | [L1, 2M] | | | c) Problems in Top Down Parsing? | [L1, 2M] | | | d) Define Handle prunig?. | [L1, 2M] | | | e) DefineAmbiguous grammar? | [L2, 2M] | | | | | | | <u>UNIT-3</u> | | | | 1. Explain syntax directed definition with simple examples? | [L2, 10M] | | | 2. Describe the evaluation order of SDT with an example. | [L5, 10M] | | | 3. Explain the Type Checking with suitable examples? | [L2, 10M] | | | 4. Explain the Translation scheme of SDD. | [L2, 10M] | | | 5. Describe the representation of 3-address code with an examples. | [L5, 10M] | | | 6. Explain in detail about Backpatching Technique?. | [L2, 10M] | | | 7. Explain the applications of Syntax Directed Definition. | [L2, 10M] | | | 8. Write down the translation procedure for control statement?9. Explain different types of intermediate code representations? | [L6, 10M]
[L2, 10M] | | | 10. a) Define a syntax-directed translation. | [L1, 2M] | | | b) Define annotated parse tree. | [L1, 2M] | | | c) What are the three functions of backpatching? | [L1, 2M] | | | d) Write the Syntax of case statement?. | [L6, 2M] | | | e) Differentiate between L attribute and S attribute. | [L4, 2M] | | | UNIT-4 | | | | | 44. | | | 1. Draw the format of Activation Record in stack allocation and explain each fie | | | | 2 Evaloin about Clobal data flow analysis | [L4, 10M] | | | Explain about Global data flow analysis. Explain the Storage Organization with simple examples. | [L2, 10M] | | | 3. Explain the Storage Organization with simple examples. 4. Define Symbol table. Explain different types of Data structure for symbol table. | [L2, 10M] | | | 4. Define Symbol table. Explain different types of Data structure for symbol table [L1, 10M] 5. Distinguish between static scope and dynamic scope. Briefly explain access to non-local | | | | Names in static scope. [L4, 10M] | | | | rvanies in static scope. [L4, | TOIVI | | **COMPILER DESIGN** Page 3 | 6. Explain the Non Block Structured Languages? 7. Explain Storage allocation strategies with suitable examples? 8. Explain heap management mechanism. 9. Explain about block structured language. 10 a) Define Activation Record. b) Name any four procedural optimization techniques c) Define scope and life time of variable. d) Define symbol table. e) Define data flow equation? | [L2, 10M]
[L2, 10M]
[L2, 10M]
[L6, 10M]
[L6, 2M]
[L6, 2M]
[L1, 2M]
[L1, 2M]
[L1, 2M] | |--|--| | <u>UNIT-5</u> | | | Write about all issues in code generation. Describe it. Explain the target machine architecture? | [L6, 10M]
[L2, 10M] | | Explain optimization techniques on Basic Blocks with simple examples? Describe the various strategies in register allocation. Explain the peephole optimization Technique?. Construct the DAG for following statement. a+b*c+d+b*c | [L2, 10M]
[L5, 10M]
[L2, 10M]
[L3, 10M] | | 7. Construct the DAG for the following basic blocks 1. t1:=4*i | [L3, 10M] | | 2. t2:=a[t1]
3. t3:=4*i | | | 4. t4:=b[t3] 5. t5:=t2*t4 | | | 6. t6:=prod+t5
7. prod:=t6
8. t7:=i+1 | | | 9. i:=t7
10. if i<=20 goto 1 | | | 8. Explain the simple code generator and generate target code sequence for the forstatement $d:=(a-b)+(a-c)+(a-c)$ | ollowing
[L2, 10M] | | 9. Write short notes on i)Simple code generator ii) Register allocation | [L6, 5+5M] | | 10. Explain the following terms a) Role of peephole optimization in compilation process b) Issues in the design of a code generator.(any 4) c) Give the different forms in target program d) Give the applications of DAG. e) Define Dead-code elimination with example. | [L1, 2M]
[L6, 2M]
[L1, 2M]
[L1, 2M]
[L1, 2M] | COMPILER DESIGN Page 4