

R23

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

Bachelor of Technology

Department of Electronics and Communication Engineering

S.No.	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	MC	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	MC	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

INDUCTION PROGRAMME

INDUCTION PROGRAM (MANDATORY)	3 WEEKS DURATION
Induction program for students to be offered right at the start of the first year.	 Physical activity Creative Arts Universal Human Values Literary Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations

S.No.	Course Code	Subject	L/D	Т	Р	С
1.	23HS0840	Engineering Physics	3	I	-	3
2.	23HS0830	Linear Algebra & Calculus	3	-	-	3
3.	23EE0201	Basic Electrical & Electronics Engineering	3	-	-	3
4.	23ME0302	Engineering Graphics	1	-	4	3
5.	23CS0501	Introduction to Programming	3	-	-	3
6.	23CS0503	IT Workshop	-	-	2	1
7.	23HS0841	Engineering Physics Lab	-	-	2	1
8.	23EE0202	Electrical & Electronics Engineering Workshop	-	-	3	1.5
9.	23CS0502	Computer Programming Lab	-	-	3	1.5
10.	23HS0812	NSS/NCC/Scouts & Guides/Community Service	-	-	1	0.5
		Total	13	-	15	20.5

B. Tech. – I Year I Semester

B. Tech. – I Year II Semester

S.No.	Course Code	Subject	L/D	Т	Р	С
1.	23HS0810	Communicative English	2	-	-	2
2.	23HS0801	Chemistry	3	-	-	3
3.	23HS0831	Differential Equations & Vector Calculus	3	-	-	3
4.	23CE0101	Basic Civil & Mechanical Engineering	3	-	-	3
5.	23EE0205	Network Analysis	3	-	-	3
6.	23HS0811	Communicative English Lab	-	-	2	1
7.	23HS0802	Chemistry Lab	-	-	2	1
8.	23ME0301	Engineering Workshop	-	-	3	1.5
9.	23EE0206	Network Analysis Lab	-	-	3	1.5
10.	23HS0813	Health and wellness, Yoga and Sports	-	-	1	0.5
		Total	14	-	11	19.5

S.No.	Course Code	Subject	L/D	Т	Р	С
1.	23HS0835	Probability and Complex Variables	3	-	-	3
2.	23HS0814	Universal Human Values– Understanding Harmony and Ethical Human Conduct	2	1	-	3
3.	23EC0401	Signals, Systems and Stochastic Processes	3	-	-	3
4.	23EC0402	Electronic Devices and Circuits	3	I	-	3
5.	23EC0403	Digital Circuits Design	3	-	-	3
6.	23EC0404	Electronic Devices and Circuits Lab	-	-	3	1.5
7.	23EC0405	Digital Circuits & Signal Simulation Lab	-	-	3	1.5
8.	23CS0549	Python Programming	-	1	2	2
9.	23HS0805	Environmental Science (Audit Course)	2	-	-	-
		Total	16	02	08	20

B. Tech. – II Year I Semester

B. Tech. –II Year II Semester

S.No.	Course	Subject	L/D	Т	Р	С
	Code	Jusjeet	1,1	-	-	•
	23HS0848	Managerial Economics				
1.		and FinancialAnalysis	2	-	-	2
1.	23HS0850	Organizational Behavior	2			-
	23HS0851	Business Environment				
2.	23EE0212	Linear Control Systems	3	-	-	3
3.	23EC0407	EM Waves and Transmission Lines	3	-	-	3
4.	23EC0408	Electronic Circuits Analysis	3	-	-	3
5.	23EC0409	Analog and Digital Communications	3	-	-	3
6.	23EC0410	Electronic Circuits Analysis Lab	-	-	3	1.5
7.	23EC0411	Analog and Digital Communications Lab	-	-	3	1.5
8.	23HS0818	Soft Skills	-	1	2	2
9.	23HS0815	Design Thinking and Innovation	1	-	2	2
		Total	15	1	10	21
]	Mandatory Community Service Project Internship of 08 weeks duration					
during summer vacation						

С

3

L

3

Т

Р

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

I B.Tech – I Sem.

(23HS0840) ENGINEERING PHYSICS (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

To bridge the gap between the Physics in school at 10+2 level and UG level engineering coursesby identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Analyze the intensity variation of light due to polarization, interference and diffraction.
- 2. Familiarize with the basics of crystals and their structures.
- *3 Explain fundamentals of quantum mechanics and apply it to one dimensional motion of particles.*
- 4. Summarize various types of polarization of dielectrics and classify the magneticmaterials.
- 5. Explain the basic concepts of Quantum Mechanics and the band theory of solids.
- 6. Identify the type of semiconductor using Hall effect.

UNIT-I

Wave Optics

Interference: Introduction - Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colours in thin films- Newton's Rings, Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffractions - Fraunhofer diffraction due to single slit, double slit & N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating (Qualitative).

Polarization: Introduction - Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism - Half wave and Quarter wave plates.

UNIT-II

Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattices – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X- ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods

UNIT-III Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - complex dielectric constant – Frequency dependence of polarization – dielectric loss

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability – Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials.

UNIT-IV

Quantum Mechanics and Free electron Theory

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations–Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory – electrical conductivity based on quantum free electron theory - Fermi-Dirac distribution - Density of states - Fermi energy

UNIT-V

Semiconductors

Semiconductors: Formation of energy bands – classification of crystalline solids - Intrinsic semiconductors: Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors: density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation – Hall effect and its applications.

TEXTBOOKS

- M. N. Avadhanulu, P.G.Kshirsagar & TVS ArunMurthy, A Text book of Engineering Physics, S. Chand Publications, 11th Edition 2019.
- 2. D.K.Bhattacharya and Poonam Tandon, Engineering Physics, Oxford press (2015).

REFERENCES

- 1. B.K. Pandey and S. Chaturvedi, *Engineering Physics*, Cengage Learning 2021.
- 2. Shatendra Sharma, Jyotsna Sharma, Engineering Physics, Pearson Education, 2018.
- 3. M.R. Srinivasan, *Engineering Physics*, New Age international publishers (2009).

WEB RESOURCES: https://www.loc.gov/rr/scitech/selected-internet/physics.html

I B. Tech. – I Sem.

L T P C 3 - - 3

(23HS0830) LINEAR ALGEBRA & CALCULUS (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Develop and use of matrix algebra techniques that are needed by engineers for practical applications.
- 2. Identify different matrix techniques to find the inverse and powers of the matrix.
- 3. Understanding the concepts of continuity and differentiability of functions defined on intervals
- 4. Estimate the series expansions of algebraic and transcendental functions.
- 5. Analyze the functions of several variables which is useful in optimization.
- 6. Familiarize with double and triple integrals of functions of several variables in two dimensions using Cartesian and polar coordinates and in three dimensions using cylindrical and spherical coordinates.

UNIT-I

Matrices

Rank of a matrix by echelon form, normal form. Cauchy–Binet formulae (without proof). Inverse of Non- singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Jacobi and Gauss Seidel Iteration Methods.

UNIT-II

Eigenvalues, Eigenvectors and Orthogonal Transformation

Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III

Calculus

Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof), Problems and applications on the above theorems.

UNIT-IV

Partial differentiation and Applications (Multi variable calculus)

Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule, Directional derivative, Taylor's and Maclaurin's series expansion of functions of two variables. Jacobians, Functional dependence, maxima and minima of functions of two variables, method of Lagrange multipliers.

UNIT-V

Multiple Integrals (Multi variable Calculus)

Double integrals, triple integrals, change of order of integration, change of variables to polar, cylindrical and spherical coordinates. Finding areas (by double integrals) and volumes (by double integrals) and triple integrals).

TEXT BOOKS

- 1. B. S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 2017, 44th Edition
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2018, 10th Edition.

REFERENCES

- 1. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, *Calculus*, PearsonPublishers, 2018, 14th Edition.
- 2. R. K. Jain and S. R. K. Iyengar, *Advanced Engineering Mathematics*, Alpha ScienceInternational Ltd., 2021 5th Edition(9th reprint).
- 3. Glyn James, Advanced Modern Engineering Mathematics, Pearson publishers, 2018, 5th Edition.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, Pearson publishers, 9th edition
- 5. H. K Das, Er. Rajnish Verma, *Higher Engineering Mathematics*, S. Chand Publications, 2014, Third Edition (Reprint 2021)

I B. Tech. – I Sem.

L T P C 3 - - 3

(23EE0201) BASIC ELECTRICAL & ELECTRONICS ENGINEERING (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

- 1. To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field.
- 2. This course provides the student with the fundamental skills to understand the principles of digital electronics, basics of semiconductor devices like diodes & transistors, characteristics and its applications.

COURSE OUTCOMES (COs)

On successful completion of this course, studens will be able to

- 1. Understand the fundamental laws, operating principles of motors, generators, MC and MI instruments.
- 2. Understand the problem solving concepts associated to AC and DC circuits, construction and operation of AC and DC machines, measuring instruments; different power generation mechanisms, Electricity billing concept and important safety measures related to electrical operations. working of diodes, transistors, and their applications, working mechanism of different combinational, sequential circuits and their role in the digital systems.
- 3. Apply mathematical tools and fundamental concepts to derive various equations related to machines, circuits and measuring instruments; electricity bill calculations and layout representation of electrical power systems.
- 4. Analyze different electrical and electronic circuits, performance of machines and measuring instruments.
- 5. Evaluate different circuit configurations, Machine performance and Power systems operation.
- 6. Familiarize with the number systems, codes, Boolean algebra and logic gates.

PART A: BASIC ELECTRICAL ENGINEERING

UNIT-I

DC & AC Circuits

DC Circuits: Electrical circuit elements (R, L and C), Ohm's Law and its limitations, KCL & KVL, series, parallel, series-parallel circuits, Super Position theorem, Simple numerical problems.

AC Circuits: A.C. Fundamentals: Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance,

Active power, reactive power and apparent power, Concept of power factor (Simple Numerical problems).

UNIT-II

Machines and Measuring Instruments

Machines: Construction, principle and operation of (i) DC Motor, (ii) DC Generator, (iii) Single Phase Transformer, (iv) Three Phase Induction Motor and (v) Alternator, Applications of electrical machines.

Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC), Moving Iron (MI) Instruments and Wheat Stone bridge.

UNIT-III

Energy Resources, Electricity Bill & Safety Measures

Energy Resources: Conventional and non-conventional energy resources; Layout and operation of various Power Generation systems: Hydel, Nuclear, Solar & Wind power generation.

Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

TEXTBOOKS

- 1. D. C. Kulshreshtha, Basic Electrical Engineering, Tata McGraw Hill, 2019, First Edition.
- 2. P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, *Power System Engineering*, Dhanpat Rai & Co, 2013.
- 3. Rajendra Prasad, *Fundamentals of Electrical Engineering*, PHI publishers, 2014, Third Edition.

REFERENCES

- 1. D. P. Kothari and I. J. Nagrath, *Basic Electrical Engineering*, Mc Graw Hill, 2019, Fourth Edition
- 2. V.K. Mehtha, Principles of Power Systems, S.Chand Technical Publishers, 2020
- 3. T. K. Nagsarkar and M. S. Sukhija, *Basic Electrical Engineering*, Oxford University Press, 2017
- 4. S. K. Bhatacharya, *Basic Electrical and Electronics Engineering*, Person Publications, 2018, Second Edition.

WEB RESOURCES:

- 1. https://nptel.ac.in/courses/108105053.
- 2. https://nptel.ac.in/courses/108108076.

PART B: BASIC ELECTRONICS ENGINEERING

UNIT-I

Semiconductor Devices

Introduction - Evolution of electronics – Vacuum tubes to nano electronics - Characteristics of PN Junction Diode — Zener Effect — Zener Diode and its Characteristics. Bipolar Junction Transistor — CB, CE, CC Configurations and Characteristics — Elementary Treatment of Small Signal CE Amplifier.

UNIT-II

Basic Electronic Circuits and Instrumenttaion

Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. **Amplifiers:** Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

UNIT-III

Digital Electronics

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code, Gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple combinational circuits–Half and Full Adder, Introduction to sequential circuits, Flip flops, Registers and counters (Elementary Treatment only)

TEXTBOOKS

- 1. R. L. Boylestad & Louis Nashlesky, *Electronic Devices & Circuit Theory*, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009.

REFERENCES

- 1. R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co, 2010.
- 2. Santiram Kal, *Basic Electronics- Devices, Circuits and IT Fundamentals*, Prentice Hall, India, 2002.
- 3. R. T. Paynter, *Introductory Electronic Devices & Circuits* Conventional Flow Version, Pearson Education, 2009.

С

3

L

1

Т

Р

4

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

I B. Tech. – I Sem.

(23ME0302) ENGINEERING GRAPHICS (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course is to

- 1. Enable the students with various concepts like dimensioning, conventions and standards relate to Engineering Drawing
- 2. Impart knowledge on the projection of points, lines and plane surfaces.
- 3. Improve the visualization skills for better understanding of projection of solids.
- 4. Develop the imaginative skills of the students required to understand Section of solids and Developments of surfaces.
- 5. Make the students understand the viewing perception of a solid object in Isometric and Perspective projections.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the principles of engineering drawing, including engineering curves, scales, orthographic and isometric projections.
- 2. Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views.
- 3. Understand and draw projection of solids in various positions in first quadrant.
- 4. Elucidate the basic principles of sections of solids and true shapes
- 5. Explain principles behind development of surfaces.
- 6. Prepare isometric and perspective sections of simple solids.

UNIT-I

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions and Constructing regular polygons by general methods. Curves: construction of ellipse, parabola and hyperbola by general, Cycloids, Involutes, Normal and tangent to Curves. Scales: Plain scales, diagonal scales and vernier scales.

UNIT- II

Orthographic Projections: Reference plane, importance of reference lines or Plane, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference

R23

plane and parallel to the other reference plane. Projections of Straight Line Inclined to both the reference planes

Projections of Planes: regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes.

UNIT- III

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in **simple positions:** Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to another plane.

UNIT- IV

Sections of Solids: Perpendicular and inclined section planes, Sectional views and True shape of section, Sections of solids in simple position only.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

UNIT-V

Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer graphics: Creating 2D&3D drawings of objects including PCB and Transformationsusing Auto CAD (*Not for end examination*).

TEXTBOOKS

1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 2016.

REFERENCES

- 1. K.L. Narayana and P. Kannaiah, *Engineering Drawing*, Tata McGraw Hill, 2013.
- 2. M.B.Shah and B.C. Rana, Engineering Drawing, Pearson Education Inc, 2009.
- 3. Dhananjay Jolhe, *Engineering Drawing with an Introduction to AutoCAD*, Tata Mc Graw Hill, 2017.

I B.Tech – I Sem.

(23CS0501) INTRODUCTION TO PROGRAMMING (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

- 1. To introduce students to the fundamentals of computer programming.
- 2. To provide hands-on experience with coding and debugging.
- 3. To foster logical thinking and problem-solving skills using programming.
- 4. To familiarize students with programming concepts such as data types, control structures, functions, and arrays.
- 5. To encourage collaborative learning and teamwork in coding projects.

COURSE OUTCOMES (COs)

On successful completion of this course, studens will be able to:

- 1. Understand basics of computers, the concept of algorithm and algorithmic thinking.
- 2. Analyse a problem and develop an algorithm using control structures & arrays
- 3. Analyse a problem and develop an algorithm to solve it using strings
- 4. Understand and implement the problems using pointers
- 5. Apply modular approach for solving the problem
- 6. Design and implement problem-solving using structures, unions and files.

UNIT - I

Introduction to Programming and Problem Solving: History of Computers, Basic organization of a computer: ALU, input-output units, memory, program counter, Introduction to Programming Languages, Basics of a Computer ProgramAlgorithms, flowcharts (Using Dia Tool), pseudo code. Introduction to Compilation and Execution, Primitive Data Types, Variables, and Constants, Basic Input and Output, Operations, Type Conversion, and Casting. Problem solving techniques: Algorithmic approach, characteristics of algorithm, Problem solving strategies: Top-down approach, Bottom-up approach, Time and space complexities of algorithms.

UNIT - II

Control Structures: Simple sequential programs Conditional Statements (if, if-else, switch), Loops (for, while, dowhile) Break and Continue.

UNIT - III

Arrays and Strings: Arrays indexing, memory model, programs with array of integers, two dimensional arrays, Introduction to Strings.

UNIT - IV

Pointers & User Defined Data types: Pointers, dereferencing and address operators, pointer and address arithmetic, array manipulation using pointers, User-defined data types-Structures and Unions.

UNIT - V

Functions & File Handling: Introduction to Functions, Function Declaration and Definition, Function call Return Types and Arguments, modifying parameters inside functions using pointers, arrays as parameters. Scope and Lifetime of Variables, Basics of File Handling.

Note: The syllabus is designed with C Language as the fundamental language of implementation.

TEXTBOOKS

- 1. Brian W. Kernighan and Dennis M. Ritchie, *The C Programming Language*, , Prentice Hall, 1988
- 2. Byron S Gottfried, Schaum's Outline of Programming with C, McGraw-Hill Education, 1996

REFERENCES

- 1. Balagurusamy, E, *Computing fundamentals and C Programming*, McGraw-Hill Education, 2008.
- 2. Rema Theraja, *Programming in C*, Oxford, 2016, 2nd edition.
- 3. Forouzan, Gilberg, Prasad, *C Programming, A Problem Solving Approach*, CENGAGE, 3rd edition.

I B.Tech – I Sem.

L T P C - - 2 1

(23CS0503) IT WORKSHOP (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

- 1. To introduce the internal parts of a computer, peripherals, I/O ports, connecting cables
- 2. To demonstrate configuring the system as Dual boot both Windows and other Operating Systems Viz. Linux, BOSS
- 3. To teach basic command line interface commands on Linux.
- 4. To teach the usage of Internet for productivity and self-paced life-long learning
- 5. To introduce Compression, Multimedia and Antivirus tools and Office Tools such as Word processors, Spread sheets and Presentation tools.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Perform Hardware troubleshooting.
- 2. Understand Hardware components and inter dependencies.
- 3. Safeguard computer systems from viruses/worms.
- 4. Document/ Presentation preparation.
- 5. Perform calculations using spread sheets.
- 6. Understand and Analyse the concepts of Prompt Engineering, Language Translation and Creative Writing using AI Tools

LIST OF EXPERIMENTS

PC Hardware & Software Installation

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot (VMWare) with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Every student should install BOSS on the computer. The system should be configured as dual boot (VMWare) with both Windows and BOSS. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1: Word Orientation: The mentor needs to give an overview of La TeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of La TeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using La TeXand word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using La TeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both La TeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

EXCEL

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spread sheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function,

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

POWER POINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

AI TOOLS – ChatGPT

Task 1: Prompt Engineering: Experiment with different types of prompts to see how the model responds. Try asking questions, starting conversations, or even providing incomplete sentences to see how the model completes them.

• Ex: Prompt: "You are a knowledgeable AI. Please answer the following question: What is the capital of France?"

Task 2: Creative Writing: Use the model as a writing assistant. Provide the beginning of a story or a description of a scene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas

• Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards. Write a story about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence in one language and asking the model to translate it into another language. Compare the output to see how accurate and fluent the translations are.

• Ex: Prompt: "Translate the following English sentence to French: 'Hello, how are you doing today?'"

REFERENCES

- 1. Vikas Gupta, Comdex Information Technology course tool kit, WILEY Dream tech, 2003.
- 2. Cheryl A Schmidt, *The Complete Computer upgrade and repair book*, WILEY Dream tech, 2013, 3rd edition
- 3. *Introduction to Information Technology*, ITL Education Solutions limited, Pearson Education, 2012, 2nd edition
- 4. Kate J. Chase, PC Hardware A Handbook, PHI (Microsoft)
- 5. Leslie Lamport, LaTeX Companion, PHI/Pearson.
- 6. David Anfins on and Ken Quamme, *IT Essentials PC Hardware and Software Companion Guide*, CISCO Press, Pearson Education, 3rd edition
- 7. Patrick Regan, *IT Essentials PC Hardware and Software Labs and Study Guide*, CISCO Press, Pearson Education, 3rd edition.

I B.Tech – I Sem.

L T P C - - 2 1

(23HS0841) ENGINEERING PHYSICS LAB (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Operate optical instruments like travelling microscope and spectrometer.
- 2. Estimate the wavelengths of different colours using diffraction grating.
- 3. Plot the intensity of the magnetic field of circular coil carrying current with distance.
- 4. Evaluate dielectric constant and magnetic susceptibility for dielectric and magnetic materials respectively.
- 5. Calculate the band gap of a given semiconductor
- 6. Identify the type of semiconductor using Hall effect.

LIST OF EXPERIMENTS

- 1. Determination of radius of curvature of a given Plano-convex lens by Newton's rings.
- 2. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 3. Verification of Brewster's law
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Determination of wavelength of Laser light using diffraction grating.
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Determination of the resistivity of semiconductors by four probe methods.
- 9. Determination of energy gap of a semiconductor using p-n junction diode.
- 10. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method.
- 11. Determination of Hall voltage and Hall coefficient of a given semiconductor using Halleffect.
- 12. Determination of temperature coefficients of a thermistor.
- 13. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum.
- 14. Determination of magnetic susceptibility by Kundt's tube method.
- 15. Determination of rigidity modulus of the material of the given wire using Torsional pendulum.
- 16. Sonometer: Verification of laws of stretched string.

- 17. Determination of young's modulus for the given material of wooden scale by non-uniform bending (or double cantilever) method.
- 18. Determination of Frequency of electrically maintained tuning fork by Melde's experiment.
- **Note:** Any **TEN** of the listed experiments are to be conducted. Out of which any TWO experiments may be conducted in virtual mode.

REFERENCES

1. S. Balasubramanian, M.N. Srinivasan, *A Textbook of Practical Physics*, S. Chand Publishers, 2017.

WEB RESOURCES

- 1. www.vlab.co.in
- 2. <u>https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype</u>

R23

I B.Tech – I Sem.

L T P C - - 3 1.5

(23EE0202) ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the Electrical circuit design concept; measurement of resistance, power, power factor; concept of wiring and operation of Electrical Machines and Transformer. usage of electronic measuring instruments.
- 2. Apply the theoretical concepts and operating principles to derive mathematical models for circuits, Electrical machines and measuring instruments; calculations for the measurement of resistance, power and power factor.
- 3. Apply the theoretical concepts to obtain calculations for the measurement of resistance, power and power factor.
- 4. Analyse various characteristics of electrical circuits, electrical machines, measuring instrument and digital circuits.
- 5. Design suitable circuits and methodologies for the measurement of various electrical parameters; Design suitable Household and commercial wiring.
- 6. Plot and discuss the characteristics of various electron devices.

Activities:

- 1. Familiarization of commonly used Electrical & Electronic Workshop Tools: Bread board, Solder, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, flux, knife/blade, soldering iron, de-soldering pump etc.
- Provide some exercises so that hardware tools and instruments are learned to be used by the students.
- 2. Familiarization of Measuring Instruments like Voltmeters, Ammeters, multimeter, LCR-Q meter, Power Supplies, CRO, DSO, Function Generator, Frequency counter.
- Provide some exercises so that measuring instruments are learned to be used by the students.
- 3. Components:
- Familiarization/Identification of components (Resistors, Capacitors, Inductors, Diodes, transistors, IC's etc.) Functionality, type, size, colour coding package, symbol, cost etc.

• Testing of components like Resistor, Capacitor, Diode, Transistor, ICs etc. - Compare values of components like resistors, inductors, capacitors etc with the measured values by using instruments

PART A: ELECTRICAL ENGINEERING LAB

List of experiments:

- 1. Verification of KCL and KVL
- 2. Verification of Superposition theorem
- 3. Measurement of Resistance using Wheat stone bridge
- 4. Magnetization Characteristics of DC shunt Generator
- 5. Measurement of Power and Power factor using Single-phase wattmeter
- 6. Measurement of Earth Resistance using Megger
- 7. Calculation of Electrical Energy for Domestic Premises

REFERENCES:

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition.

Note: Minimum Six Experiments to be performed.

PART B: ELECTRONICS ENGINEERING LAB

List of Experiments:

- 1. Plot V-I characteristics of PN Junction diode A) Forward bias B) Reverse bias.
- 2. Plot V I characteristics of Zener Diode and its application as voltage Regulator.
- 3. Implementation of half wave and full wave rectifiers.
- 4. Plot Input & Output characteristics of BJT in CE and CB configurations
- 5. Frequency response of CE amplifier.
- 6. Simulation of RC coupled amplifier with the design supplied
- 7. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 8. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

REFERENCES

- 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version,
- 4. Pearson Education, 2009.

Note: Minimum Six Experiments to be performed. All the experiments shall be implemented using both Hardware and Software.

I B.Tech – I Sem.

L T P C - - 3 1.5

(23CS0502) COMPUTER PROGRAMMING LAB (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

1. The course aims to give students hands – on experience and train them on the concepts of the *C*-programming language.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Read, understand, and trace the execution of programs written in C language.
- 2. Select the right control structure for solving the problem.
- 3. Develop C programs which utilize memory efficiently using programming constructs like pointers.
- 4. Develop Debug and Execute programs to demonstrate the applications of arrays in C.
- 5. Develop Debug and Execute programs to demonstrate the applications of functions in C.
- 6. Implement the C programs using File handling Concepts.

UNIT-I

WEEK 1 - Objective: Getting familiar with the programming environment on the computer and writing the first program.

Suggested Experiments/Activities:

Tutorial 1: Problem-solving using Computers.

Lab1: Familiarization with programming environment

- i) Basic Linux environment and its editors like Vi, Vim & Emacs etc.
- ii) Exposure to Turbo C, gcc
- iii) Writing simple programs using printf(), scanf()

WEEK 2 - Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation.

Suggested Experiments /Activities:

Tutorial 2: Problem-solving using Algorithms and Flow charts.

Lab 1: Converting algorithms/flow charts into C Source code. Developing the algorithms/flowcharts for the following sample programs

- i) Sum and average of 3 numbers
- ii) Conversion of Fahrenheit to Celsius and vice versa
- iii) Simple interest calculation

WEEK 3 - Objective: Learn how to define variables with the desired data-type, initialize them with appropriate values and how arithmetic operators can be used with variables and constants.

Suggested Experiments/Activities:

Tutorial 3: Variable types and type conversions:

Lab 3: Simple computational problems using arithmetic expressions.

- i) Finding the square root of a given number
- **ii**) Finding compound interest
- iii) Area of a triangle using heron's formulae
- iv) Distance travelled by an object

UNIT-II

WEEK 4 - Objective: Explore the full scope of expressions, type-compatibility of variables & constants and operators used in the expression and how operator precedence works.

Suggested Experiments/Activities:

Tutorial 4: Operators and the precedence and as associativity:

- Lab 4: Simple computational problems using the operator' precedence and associativity
 - i) Evaluate the following expressions. a. A+B*C+(D*E) + F*G b. A/B*C-B+A*D/3 c. A+++B---A d. J= (i++) + (++i)
 - ii) Find the maximum of three numbers using conditional operator
 - iii) Take marks of 5 subjects in integers, and find the total, average in float

WEEK 5 - Objective: Explore the full scope of different variants of "if construct" namely if-else, nullelse, if-else if*-else, switch and nested-if including in what scenario each one of them can be used and how to use them. Explore all relational and logical operators while writing conditionals for "if construct".

Suggested Experiments/Activities:

Tutorial 5: Branching and logical expressions:

Lab 5: Problems involving if-then-else structures.

- i) Write a C program to find the max and min of four numbers using if-else.
- ii) Write a C program to generate electricity bill.
- iii) Find the roots of the quadratic equation.
- iv) Write a C program to simulate a calculator using switch case.
- v) Write a C program to find the given year is a leap year or not.

WEEK 6 - Objective: Explore the full scope of iterative constructs namely while loop, do-while loop and for loop in addition to structured jump constructs like break and continue including when each of these statements is more appropriate to use.

Suggested Experiments/Activities:

Tutorial 6: Loops, while and for loops

Lab 6: Iterative problems e.g., the sum of series

- i) Find the factorial of given number using any loop.
- ii) Find the given number is a prime or not.
- iii) Compute sine and cos series
- iv) Checking a number palindrome
- v) Construct a pyramid of numbers.

UNIT-III

WEEK 7 - Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.

Lab 7: 1D Array manipulation, linear search

- i) Find the min and max of a 1-D integer array.
- ii) Perform linear search on1D array.
- iii) The reverse of a 1D integer array
- iv) Find 2's complement of the given binary number.
- v) Eliminate duplicate elements in an array.

WEEK 8 - Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings. Explore sorting solution bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2D arrays, sorting and Strings.

Lab 8: Matrix problems, String operations, Bubble sort

- i) Addition of two matrices
- **ii**) Multiplication two matrices
- iii) Sort array elements using bubble sort
- iv) Concatenate two strings without built-in functions
- v) Reverse a string using built-in and without built-in string functions

UNIT-IV

WEEK 9 - Objective: Explore pointers to manage a dynamic array of integers, including memory allocation & value initialization, resizing changing and reordering the contents of an array and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C

Suggested Experiments/Activities:

Tutorial 9: Pointers, structures and dynamic memory allocation

Lab 9: Pointers and structures, memory dereference.

- i) Write a C program to find the sum of a 1D array using malloc()
- ii) Write a C program to find the total, average of n students using structures
- iii) Enter n students data using calloc() and display failed students list
- iv) Read student name and marks from the command line and display the student details along with the total.
- **v**) Write a C program to implement realloc()

WEEK 10 - Objective: Experiment with C Structures, Unions, bit fields and self-referential structures (Singly linked lists) and nested structures

Suggested Experiments/Activities:

Tutorial 10: Bitfields, Self-Referential Structures, Linked lists

Lab10: Bitfields, linked lists Read and print a date using dd/mm/yyyy format using bit-fields and differentiate the same without using bit-fields

- i) Create and display a singly linked list using self-referential structure.
- ii) Demonstrate the differences between structures and unions using a C program.
- iii) Write a C program to shift/rotate using bitfields.
- iv) Write a C program to copy one structure variable to another structure of the same type.

UNIT-V

WEEK 11 - Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some experiments by parameter passing using call by value. Basic methods of numerical integration. **Suggested Experiments/Activities:**

Tutorial 11: Functions, call by value, scope and extent.

Lab 11: Simple functions using call by value, solving differential equations using Eulers theorem.

- i) Write a C function to calculate NCR value.
- ii) Write a C function to find the length of a string.
- iii) Write a C function to transpose of a matrix.
- iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method

WEEK 12 - Objective: Explore how recursive solutions can be programmed by writing recursive functions that can be invoked from the main by programming at-least five distinct problems that have naturally recursive solutions.

Suggested Experiments/Activities:

Tutorial 12: Recursion, the structure of recursive calls

Lab 12: Recursive functions

- i) Write a recursive function to generate Fibonacci series.
- ii) Write a recursive function to find the LCM of two numbers.
- iii) Write a recursive function to find the factorial of a number.
- iv) Write a C Program to implement Ackermann function using recursion.
- v) Write a recursive function to find the sum of series.

WEEK 13 - Objective: Explore the basic difference between normal and pointer variables, Arithmetic operations using pointers and passing variables to functions using pointers

Suggested Experiments/Activities:

Tutorial 13: Call by reference, dangling pointers

Lab 13: Simple functions using Call by reference, Dangling pointers.

- i) Write a C program to swap two numbers using call by reference.
- ii) Demonstrate Dangling pointer problem using a C program.
- iii) Write a C program to copy one string into another using pointer.
- iv) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.

WEEK 14 - Objective: To understand data files and file handling with various file I/O functions. Explore the differences between text and binary files.

Suggested Experiments/Activities:

Tutorial 14: File handling

Lab 14: File operations

- ii) Write a C program to write and read text into a file.
- iii) Write a C program to write and read text into a binary file using fread() and fwrite()
- iv) Copy the contents of one file to another file.
- v) Write a C program to merge two files into the third file using command-line arguments.
- vi) Find no. of lines, words and characters in a file
- vii) Write a C program to print last n characters of a given file.

TEXT BOOKS

- 1. Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw Hill

REFERENCES

- 1. Brian W. Kernighan and Dennis M. Ritchie, *The C Programming Language*, PrenticeHall of India
- 2. Forouzan, Gilberg, Prasad, C Programming, A Problem-Solving Approach, CENGAGE.

I B.Tech – I Sem.

L T P C - - 1 0.5

(23HS0812) NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

The objective of introducing this course is to impart discipline, character, fraternity, teamwork, social consciousness among the students and engaging them in selfless service.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to:

- 1. Understand the importance of discipline, character and service motto.
- 2. Solve some societal issues by applying acquired knowledge, facts, and techniques.
- 3. Explore human relationships by analyzing social problems.
- 4. Determine to extend their help for the fellow beings and downtrodden people.
- 5. Develop leadership skills and civic responsibilities.
- 6. Focus on awareness programmes that build community service

UNIT-I Orientation

General Orientation on NSS/NCC/ Scouts & Guides/Community Service activities, career guidance.

Activities:

- i) Conducting –ice breaking sessions-expectations from the course-knowing personal talents and skills
- ii) Conducting orientations programs for the students –future plans-activities-releasingroad map etc.
- iii) Displaying success stories-motivational biopics- award winning movies on societalissues etc.
- iv) Conducting talent show in singing patriotic songs-paintings- any other contribution.

UNIT- II Nature & CareActivities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organising Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.
- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT III Community ServiceActivities:

- i) Conducting One Day Special Camp in a village contacting village-area leaders- Surveyin the village, identification of problems- helping them to solve via media- authorities-experts-etc.
- ii) Conducting awareness programs on Health-related issues such as General Health, Mental health, Spiritual Health, HIV/AIDS,
- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes- Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.

REFERENCES

- 1. Nirmalya Kumar Sinha & Surajit Majumder, *A Text Book of National Service Scheme* Vol; I, Vidya Kutir Publication, 2021 (ISBN 978-81-952368-8-6)
- 2. *Red Book National Cadet Corps –* Standing Instructions Vol I & II, Directorate General of NCC, Ministry of Defence, New Delhi
- 3. Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e 2008
- 4. Masters G. M., Joseph K. and Nagendran R. "Introduction to EnvironmentalEngineering and Science", Pearson Education, New Delhi. 2/e 2007
- 5. Ram Ahuja. Social Problems in India, Rawat Publications, New Delhi.

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities.
- 2. Institutes are required to provide instructor to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting vivavoce on the subject.

*** *** ***

(AUTONOMOUS)

I B.Tech – II Sem.

L T P C 2 - - 2

(23HS0810) COMMUNICATIVE ENGLISH (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course:

The main objective of introducing this course, Communicative English, is to facilitate effective listening, Reading, Speaking and Writing skills among the students. It enhances the same in their comprehending abilities, oral presentations, reporting useful information and providing knowledge of grammatical structures and vocabulary. This course helps the students to make them effective in speaking and writing skills and to make them industry ready.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to:

- 1. Understand the context, topic, and pieces of specific information from social or Transactional dialogues.
- 2. Apply grammatical structures to formulate sentences and correct word forms.
- 3. Analyze discourse markers to speak clearly on a specific topic in informal discussions.
- 4. Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- 5. Create a coherent paragraph, essay, and resume.
- 6. Demonstrate the skills needed to participate in a conversation that builds knowledge collaboratively.

UNIT-I

Lesson: HUMAN VALUES: Gift of Magi (Short Story)

Listening:	Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.
Speaking:	Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.
Reading:	Skimming to get the main idea of a text; scanning to look for specific pieces of information.
Writing:	Mechanics of Writing-Capitalization, Spellings, Punctuation-Parts of Sentences.
Grammar:	Parts of Speech, Basic Sentence Structures-forming questions
Vocabulary:	Synonyms, Antonyms, Affixes (Prefixes/Suffixes), Root words.

$\mathbf{UNIT} - \mathbf{II}$

Lesson: NATURE: The Brook by Alfred Tennyson (Poem)

- **Listening:** Answering a series of questions about main ideas and supporting ideas afterlistening to audio texts.
- **Speaking:** Discussion in pairs/small groups on specific topics followed by short structuretalks.

Reading:	Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas
	in a paragraph together.
Writing:	Structure of a paragraph - Paragraph writing (specific topics)
Grammar:	Cohesive devices - linkers, use of articles and zero article; prepositions.
Vocabulary:	Homonyms, Homophones, Homographs.

UNIT – III

Lesson: BIOGRAPHY: Elon Musk

Listening: Listening for global comprehension and summarizing what is listened to.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed

Reading: Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension.

Writing: Summarizing, Note-making, paraphrasing

Grammar: Verbs - tenses; subject-verb agreement; Compound words,

Vocabulary: Collocations

UNIT – IV

Lesson: INSPIRATION: The Toys of Peace by Saki

- **Listening:** Making predictions while listening to conversations/ transactional dialogues without video; listening with video.
- **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) asking for and giving information/directions.
- **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data.

Writing: Letter Writing: Official Letters, Resumes.

- Grammar: Reporting verbs, Direct & Indirect speech, Active & Passive Voice
- Vocabulary: Words often confused, Jargons

UNIT – V

Lesson: MOTIVATION: The Power of Intrapersonal Communication (An Essay)

- **Listening:** Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.
- **Speaking:** Formal oral presentations on topics from academic contexts

Reading: Reading comprehension.

- Writing: Writing structured essays on specific topics.
- **Grammar:** Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Vocabulary: Technical Jargons

TEXTBOOKS

- 1. Pathfinder: Communicative English for Undergraduate Students, 1st Edition, OrientBlack Swan, 2023 (Units 1,2 & 3).
- 2. Empowering with Language by Cengage Publications, 2023 (Units 4 & 5).

R23

REFERENCES

- 1. Dubey, Sham Ji & Co. English for Engineers, Vikas Publishers, 2020.
- 2. Bailey, Stephen. Academic writing: A Handbook for International Students. Routledge, 2014.
- 3. Murphy, Raymond. English Grammar in Use, Fourth Edition, Cambridge UniversityPress, 2019.
- 4. Lewis, Norman. Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary. Anchor, 2014.

WEB RESOURCES:

GRAMMAR:

- 1. www.bbc.co.uk/learningenglish.
- 2. https://dictionary.cambridge.org/grammar/british-grammar/
- 3. www.eslpod.com/index.html
- 4. <u>https://www.learngrammar.net/</u>
- 5. https://english4today.com/english-grammar-online-with-quizzes/
- 6. <u>https://www.talkenglish.com/grammar/grammar.aspx</u>

VOCABULARY

- 1. <u>https://www.youtube.com/c/DailyVideoVocabulary/videos</u>
- 2. https://www.youtube.com/channel/UC4cmBAit8i_NJZE8qK8sfpA

I B.Tech – II Sem.

L	Т	Р	С
3	-	-	3

(20HS0801) CHEMISTRY

(Common to EEE, ECE, CSE, IT & allied branches)

COURSE OBJECTIVES

The objectives of this course

- 1. To familiarize engineering chemistry and its applications
- 2. To train the students on the principles and applications of electrochemistry and polymers
- 3. To introduce instrumental methods, molecular machines and switches.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to:

- 1. Acquire the knowledge on the behaviour and interactions between matter and energy at both the atomic and molecular levels.
- 2. Analyze and demonstrate the applications of modern engineering materials in real world.
- 3. Impart the knowledge on the essential aspects of electrochemical cells, emf and applications of emf measurements
- 4. Gain the knowledge about construction and applications of batteries and sensors,
- 5. Impart knowledge on the essential aspects of Principles and comprehend idea about the synthesis and engineering applications of polymers.
- 6. Analyse the molecular transitions of Electromagnetic radiation (EMR) with matter in various spectroscopic techniques.

UNIT – I

Structure and Bonding Models:

Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of and Ψ^2 , particle in one dimensional box, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O2 and CO, etc. π -molecular orbitals of butadiene and benzene, calculation of bond order.

UNIT- II

Modern Engineering Materials:

Semiconductors – Introduction, basic concept, application.

Super Conductors - Introduction basic concept, applications.

Super Capacitors - Introduction, Basic Concept, Classification – Applications.

Nano Materials - Introduction, classification, properties and applications of Fullerenes, Carbon nano tubes and Graphines nanoparticles.

UNIT-III

Electrochemistry and Applications:

Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Primary cells – Zinc-air battery, Secondary cells – lithium-ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygenfuel cell– working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).

UNIT - IV

Polymer Chemistry:

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, with specific examples and mechanisms of polymer formation.

Plastics –Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers-Buna-S, Buna-N-preparation, properties and applications.

Conducting Polymers – polyacetylene, polyaniline, – mechanism of conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).

UNIT - V

Instrumental Methods and Applications:

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. UV-Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes and selection rules, Instrumentation. High pressure Liquid Chromatography (HPLC) Classification, Principle, Instrumentation and Applications.

TEXTBOOKS

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, *Atkins' Physical Chemistry*, 10/e, Oxford University Press, 2010.

REFERENCES

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, *Concise Inorganic Chemistry*, 5th Edition, Wiley Publications, Feb.2008.
- 3. Fred W. Billmayer Jr, Textbook of Polymer Science, 3rd Edition.

R23

I B. Tech. – II Sem.

L T P C 3 - - 3

(20HS0831) DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

- 1. To enlighten the learners in the concept of differential equations and multivariable calculus.
- 2. To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to:

- 1. Solve the differential equations related to various engineering fields.
- 2. Create basic application problems described by second order linear differential equations with constant coefficients.
- 3. Understand basic properties of standard partial differential equations.
- 4. Identify solution methods for partial differential equations that model physical processes.
- 5. Interpret the physical meaning of different operators such as gradient, curl and divergence.
- 6. Estimate the work done against a field, circulation and flux using vector calculus.

UNIT-I

Differential equations of first order and first degree

Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay- Electrical circuits.

UNIT-II

Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and Simple Harmonic motion.

UNIT-III

Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.

UNIT-IV

Vector differentiation

Scalar and vector point functions, vector operator Del, Del applies to scalar point functions- Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT-V

Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.

TEXTBOOKS

- 1. B. S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 2017, 44th Edition.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, John Wiley & Sons, 2018, 10th Edition.

REFERENCES

- 1. George B. Thomas, Maurice D. Weir and Joel Hass, *Thomas Calculus*, Pearson Publishers, 2018, 14th Edition.
- 2. Dennis G. Zill and Warren S. Wright, Jones and Bartlett, Advanced Engineering Mathematics, 2018.
- 3. Glyn James, Advanced Modern Engineering Mathematics, Pearson publishers, 2018, 5th Edition.
- 4. R. K. Jain and S. R. K. Iyengar, *Advanced Engineering Mathematics*, Alpha Science International Ltd., 2021 5th Edition (9th reprint).
- 5. B. V. Ramana, *Higher Engineering Mathematics*, McGraw Hill Education, 2017.

I B.Tech – II Sem.

L T P C 3 - - 3

(23CE0101) BASIC CIVIL AND MECHANICAL ENGINEERING (Common to All Branches of Engineering)

PART A: BASIC CIVIL ENGINEERING

COURSE OBJECTIVES

The objectives of this course

- 1. Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- 2. Introduce the preliminary concepts of surveying.
- 3. Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- 4. Get familiarized with the importance of quality, conveyance and storage of water
- 5. Introduction to basic civil engineering materials and construction techniques.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to:

- 1. Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society.
- 2. Know the concepts of surveying and to understand the measurement of distances, angles and levels through surveying.
- 3. Realize the importance of Transportation in nation's economy and the engineering measures related to Transportation and understand the process of water storage and its supply to the public.

UNIT-I

Basics of Civil Engineering: Role of Civil Engineers in Society - Various Disciplines of Civil Engineering - Structural Engineering - Geo-technical Engineering - Transportation Engineering - Hydraulics and Water Resources Engineering - Environmental Engineering - Scope of each discipline - Building Construction and Planning - Construction Materials - Cement - Aggregate - Bricks - Cement concrete - Steel. Introduction to Prefabricated construction Techniques

UNIT-II

Surveying: Objectives of Surveying - Horizontal Measurements - Angular Measurements - Introduction to Bearings - Levelling instruments used for levelling - Simple problems on levelling and bearings - Contour mapping.

UNIT-III

Transportation Engineering: Importance of Transportation in Nation's economic development -Types of Highway Pavements - Flexible Pavements and Rigid Pavements - Simple Differences. Basics of Harbour, Tunnel, Airport, and Railway Engineering

Water Resources and Environmental Engineering: Introduction, Sources of water - Quality of water - Specifications - Introduction to Hydrology – Rainwater Harvesting - Water Storage and Conveyance Structures (Simple introduction to Dams and Reservoirs).

TEXT BOOKS

- 1. M.S.Palanisamy, *Basic Civil Engineering*, Tata McGraw Hill publications (India) Pvt. Ltd. Fourth Edition, 2011.
- 2. S.S. Bhavikatti, *Introduction to Civil Engineering*, New Age International Publishers, First Edition, 2022.
- 3. Satheesh Gopi, Basic Civil Engineering, Pearson Publications, First Edition, 2009.

REFERENCES

- 1. S.K. Duggal, *Surveying, Vol- I and Vol-II*, Tata McGraw Hill Publishers, Fifth Edition, 2019
- 2. Santosh Kumar Garg, *Hydrology and Water Resources Engineering*, Khanna Publishers, Delhi, 2016.
- 3. Santosh Kumar Garg, *Irrigation Engineering and Hydraulic Structures*, Khanna Publishers, Delhi, 38th Edition, 2023.
- 4. S.K.Khanna, C.E.G. Justo and Veeraraghavan, *Highway Engineering*, Nemchand and Brothers Publications, 10th Edition, 2019.
- 5. Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART B: BASIC MECHANICAL ENGINEERING

COURSE OBJECTIVES

The objectives of this course

- 1. Get familiarized with the scope and importance of Mechanical Engineering in different sectors and industries.
- 2. Explain different engineering materials and different manufacturing processes.
- 3. Provide an overview of different thermal and mechanical transmission systems and introduce basics of robotics and its applications.

COURSE OUTCOMES (COs)

On successful completion of this course, studens will be able to

- 1. Understand the role of mechanical engineering and materials in the manufacturing and automotive industries
- 2. Explain the basics of manufacturing processes and thermal engineering and its applications.
- 3. Describe the working of different powerplants. Mechanical power transmission systems and the applications of robotics in industrial sector.

UNIT-I

Introduction to Mechanical Engineering: Role of Mechanical Engineering in Industries and Society- Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors.

Engineering Materials - Metals-Ferrous and Non-ferrous, Ceramics, Composites, Smart materials.

UNIT-II

Manufacturing Processes: Principles of Casting, Forming, joining processes, Machining, Introduction to CNC machines, 3D printing, and Smart manufacturing.

Thermal Engineering – working principle of Boilers, Otto cycle, Diesel cycle, Refrigeration and airconditioning cycles, IC engines, 2-Stroke and 4-Stroke engines, SI/CI Engines, Components of Electric and Hybrid Vehicles.

UNIT-III

Power plants – working principle of Steam, Diesel, Hydro, Nuclear power plants.

Mechanical Power Transmission - Belt Drives, Chain, Rope drives, Gear Drives and their applications.

Introduction to Robotics - Joints & links, configurations, and applications of robotics.

(Note: The subject covers only the basic principles of Civil and Mechanical Engineering systems. The evaluation shall be intended to test only the fundamentals of the subject)

TEXTBOOKS

- 1. V.Ganesan, Internal Combustion Engines, Tata McGraw Hill publications (India)Pvt. Ltd.
- 2. S.S. Rattan, *A Tear book of Theory of Machines* Tata McGraw Hill Publications, (India) Pvt. Ltd.
- 3. Jonathan Wicker and Kemper Lewis, *An introduction to Mechanical Engineering*, Cengage learning India Pvt. Ltd.

- 1. Appuu Kuttan KK, Robotics, I.K. International Publishing House Pvt. Ltd. Volume-I
- 2. L. Jyothish Kumar, Pulak MPandey, *3D printing & Additive Manufacturing Technology*, Springer publications
- 3. Mahesh M Rathore, *Thermal Engineering*, Tata McGraw Hill publications (India) Pvt.Ltd.
- 4. G. Shanmugam and M.S.Palanisamy, *Basic Civil and the Mechanical Engineering*, Tata McGraw Hill publications (India) Pvt. Ltd.

I B.Tech – II Sem.

L T P C 3 - - 3

(23EE0205) NETWORK ANALYSIS

COURSE OBJECTIVES

The objectives of this course

- 1. To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits
- 2. To impart knowledge on applying appropriate theorem for electrical circuit analysis
- 3. To explain transient behavior of circuits in time and frequency domains
- 4. To teach concepts of resonance
- 5. To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand basic electrical circuits with nodal and mesh analysis.
- 2. Analyse the circuit using network simplification theorems.
- 3. Find Transient response and Steady state response of a network.
- 4. Analyse magnetically coupled circuits
- 5. Analyse electrical networks in the Laplace domain.
- 6. Compute the parameters of a two-port network.

UNIT- I

Types of circuit components, Types of Sources and Source Transformations, Mesh analysis and Nodal analysis, problem solving with resistances only including dependent sources also. Principal of Duality with examples.

Network Theorems: Thevenin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens - problem solving using dependent sources also.

UNIT- II

Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem-solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots.

Laplace transform: introduction, Laplace transformation, basic theorems, problem solving using Laplace transform, partial fraction expansion, Heaviside's expansions, problem solving using Laplace transform.

UNIT- III

Steady State Analysis of A.C Circuits: Impedance concept, phase angle, series R-L, R-C, R-L- C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving using Laplace transforms also.

UNIT-IV

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, general case-resistance present in both branches, anti-resonance at all frequencies.

Coupled Circuits: Coupled Circuits: Self-inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, conductively coupled equivalent circuits- problem solving.

UNIT- V

Two-port Networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h- parameters, Relationships Between parameter Sets, Parallel & series connection of two port networks, cascading of two port networks, problem solving using dependent sources also.

Image and iterative impedances. Image and iterative transfer constants. Insertion loss. Attenuators and pads. Lattice network and its parameters. Impedance matching networks.

TEXTBOOKS

- 1. ME Van Valkenburg, *Network Analysis*, Prentice Hall of India, revised, 3rd Edition, 2019.
- 2. William H. Hayt, Jack Kemmerly, Jamie Phillips, Steven M. Durbin, *Engineering Circuit Analysis*, 9th Edition, 2020.
- 3. John. D. Ryder, Network lines and Fields, 2nd Edition, PHI.

- 1. D. Roy Choudhury, *Networks and Systems*, New Age International Publications, 2013.
- 2. Joseph Edminister and Mahmood Nahvi, *Electric Circuits*, Schaum's Outline Series, 7th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2017.
- 3. Charles K. Alexander and Matthew N. O. Sadiku, *Fundamentals of Electric Circuits*, Mc Graw-Hill Education.

I B.Tech – II Sem.

L T P C - - 2 1

(23HS0811) COMMUNICATIVE ENGLISH LAB (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

The main objective of introducing this course, Communicative English Laboratory, is to expose the students to a variety of self-instructional, learner friendly modes of language learning. The students will get trained in basic communication skills and also make them ready to face job interviews.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the different aspects of the English language proficiency with emphasis on LSRW skills.
- 2. Apply communication skills through various language learning activities.
- 3. Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- 4 Evaluate and exhibit professionalism in participating in debates and group discussions.
- 5 Become active participants in the learning process and acquire proficiency in spoken English.
- 6. Speak with clarity and confidence thereby enhances employability skills.

List of Topics:

- 1. Vowels & Consonants
- 2. Neutralization/Accent Rules
- 3. Communication Skills & JAM
- 4. Role Play or Conversational Practice
- 5. E-mail Writing
- 6. Resume Writing, Cover letter, SOP
- 7. Group Discussions-methods & practice
- 8. Debates Methods & Practice
- 9. PPT Presentations/ Poster Presentation
- 10. Interviews Skills

Suggested Software:

- Walden Infotech
- Young India Films

- 1. Raman Meenakshi, Sangeeta-Sharma, *Technical Communication*. Oxford Press.2018.
- 2. Taylor Grant, English Conversation Practice, Tata McGraw-Hill Education India, 2016.
- 3. Hewing's, Martin. Cambridge, Academic English (B2), CUP, 2012.
- 4. J. Sethi & P.V. Dhamija, A Course in Phonetics and Spoken English, (2nd Ed), Kindle, 2013.

I B.Tech – II Sem.

L T P C - - 2 1

(23HS0802) CHEMISTRY LAB (Common to EEE, ECE, CSE, IT & allied branches)

COURSE OBJECTIVES

The objectives of this course

1. Verify the fundamental concepts with experiments.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Determine the cell constant and conductance of solutions.
- 2. Prepare advanced polymer Bakelite materials.
- 3. Measure the strength of an acid present in secondary batteries.
- 4. Analyse the IR spectra of some organic compounds.
- 5. Able to understand about the fundamental concepts of analytical instruments
- 6. Calculate strength of acid in Pb-Acid battery.

LIST OF EXPERIMENTS

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Conductometric titration of strong acid vs. strong base
- 3. Conductometric titration of weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite
- 8. Verify Lambert-Beer's law
- 9. Wavelength measurement of sample through UV-Visible Spectroscopy
- 10. Identification of simple organic compounds by IR
- 11. Preparation of nanomaterials by precipitation method
- 12. Estimation of Ferrous Iron by Dichrometry

Any Ten experiments may be conducted

REFERENCES

1. J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar, *Vogel's Quantitative Chemical Analysis*, 6th Edition, Pearson Publications.

I B.Tech – II Sem.

L T P C - - 3 1.5

(20ME0301) WORKSHOP PRACTICE LAB (Common to All Branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

- 1. Familiarize with the different types of wood and carpentry joints.
- 2. Develop Tapered Tray and Conical funnel using sheet metal.
- 3. Acquire practical knowledge on different types of fittings.
- 4. Provides hands-on training in the trades of House-Wiring.
- 5. Overview of metal cutting processes, foundry, Welding and plumbing, is provided through live demonstrations.
- 6. Acquire practical skills by performing the experiments in different shops of workshop.

COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

- 1. Describe the different types of wood and carpentry joints.
- 2. Produce Tapered Tray and Conical funnel using sheet metal.
- 3. Understands about Fitting and their types.
- 4. Explain the method of preparation of various House-Wiring .
- 5. Apply basic techniques in foundry, Welding and plumbing.
- 6. Estimate the amount of material required for various models.

SYLLABUS

- 1. Demonstration: Safety practices and precautions to be observed in workshop.
- 2. **Wood Working:** Familiarity with different types of woods and tools used in wood working and make following joints.
 - a) Half Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint
- 3. **Sheet Metal Working**: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets.
 - a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing
- 4. **Fitting:** Familiarity with different types of tools used in fitting and do the following fitting exercises.
- a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two-wheeler tyre
- 5. **Electrical Wiring**: Familiarity with different types of basic electrical circuits and make the following connections.
 - a) Parallel and series b) Two-way switch c) Godown lighting d) Tube light e) Three phase motor
 - f) Soldering of wires
- 6. **Foundry Trade:** Demonstration and practice on Moulding tools and processes, Preparation of Green Sand Moulds for given Patterns.

- 7. Welding Shop: Demonstration and practice on Arc Welding and Gas welding. Preparation of Lap joint and Butt joint.
- 8. **Plumbing:** Demonstration and practice of Plumbing tools, Preparation of Pipe joints with coupling for same diameter and with reducer for different diameters.

TEXTBOOKS

- 1. Felix W, Basic Workshop Technology: Manufacturing Process, Independently Published, 2019.
- 2. Bruce J. Black, *Workshop Processes, Practices and Materials*; Routledge publishers, 5th Edn. 2015.
- 3. B.S. Raghuwanshi, A Course in Workshop Technology Vol I. & II, Dhanpath Rai & Co., 2015 & 2017.

- 1. S. K. Hajra Choudhury & Others, *Elements of Workshop Technology*, Vol. I, Media Promoters and Publishers, Mumbai. 2007, 14th edition
- 2. H. S. Bawa, Workshop Practice, Tata-McGraw Hill, 2004.
- 3. Soni P.M. & Upadhyay P.A., *Wiring Estimating, Costing and Contracting*; Atul Prakashan, 2021-22.

I B.Tech – II Sem.

(23EE0206) NETWORK ANALYSIS AND SIMULATION LABORATORY

COURSE OBJECTIVES (COs)

The objectives of this course

- 1. To gain hands on experience in verifying Kirchoff's laws and network theorems.
- 2. To analyze transient behavior of circuits.
- 3. To study resonance characteristics.
- 4. To determine 2-port network parameters.

COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

- 1. Verify Kirchoff's laws and network theorems.
- 2. Measure time constants of RL & RC circuits.
- 3. Analyze behavior of RLC circuit for different cases.
- 4. Analyze second order systems for different parameters
- 5. Design resonant circuit for given specifications.
- 6. Characterize and model the network in terms of all network parameters.

The following experiments need to be performed using both Hardware and simulation Software. The experiments need to be simulated using software and the same need to be verified using the hardware.

- 1. Study of components of a circuit and Verification of KCL and KVL.
- 2. Verification of mesh and nodal analysis for AC circuits
- 3. Verification of Superposition, Thevenin's & Norton theorems for AC circuits
- 4. Verification of maximum power transfer theorem for AC circuits
- 5. Verification of Tellegen's theorem for two networks of the same topology.
- 6. Study of DC transients in RL, RC and RLC circuits
- 7. To study frequency response of various 1^{st} order RL & RC networks
- 8. To study the transient and steady state response of a 2nd order circuit by varying its various parameters and studying their effects on responses
- 9. Find the Q Factor and Bandwidth of a Series and Parallel Resonance circuit.
- 10. Determination of open circuit (Z) and short circuit (Y) parameters
- 11. Determination of hybrid (H) and transmission (ABCD) parameters
- 12. To measure two port parameters of a twin-T network and study its frequency response.

Hardware Requirements:

Regulated Power supplies, Analog/Digital Function Generators, Digital Multimeters, Decade Resistance Boxes/Rheostats, Decade Capacitance Boxes, Ammeters (Analog or Digital), Voltmeters (Analog or Digital), Active & Passive Electronic Components

Software requirements:

Multisim/ Pspice/Equivalent simulation software tool, Computer Systems with required specifications

- 1. ME Van Valkenburg, Network Analysis, Prentice Hall of India, revised 3rd Edition, 2019.
- 2. William H. Hayt, Jack Kemmerly, Jamie Phillips, Steven M. Durbin, *Engineering Circuit Analysis*, 9th Edition, 2020.

I B.Tech – II Sem.

L T P C - - 1 0.5

(23HS0813) HEALTH AND WELLNESS, YOGA AND SPORTS (Common to All branches of Engineering)

COURSE OBJECTIVES

The objectives of this course

The main objective of introducing this course is to make the students maintain their mental and physical wellness by balancing emotions in their life. It mainly enhances the essential traits required for the development of the personality.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the importance of yoga and sports for Physical fitness and sound health
- 2. Demonstrate an understanding of health-related fitness components.
- 3. Compare and contrast various activities that help enhance their health.
- 4. Assess current personal fitness levels.
- 5. Develop Positive Personality.
- 6. Apply various activities for holistic development.

UNIT-I

Concept of health and fitness, Nutrition and Balanced diet, basic concept of immunity Relationship between diet and fitness, Globalization and its impact on health, Body Mass Index (BMI) of all age groups.

Activities:

- i) Organizing health awareness programmes in community
- ii) Preparation of health profile
- iii) Preparation of chart for balance diet for all age groups

UNIT- II

Concept of yoga, need for and importance of yoga, origin and history of yoga in Indian context, classification of yoga, Physiological effects of Asanas- Pranayama and meditation, stress management and yoga, Mental health and yoga practice.

Activities:

Yoga practices - Asana, Kriya, Mudra, Bandha, Dhyana, Surya Namaskar

UNIT-III

Concept of Sports and fitness, importance, fitness components, history of sports, Ancient and Modern Olympics, Asian games and Commonwealth games.

i) Participation in one major game and one individual sport viz., Athletics, Volleyball, Basketball, Handball, Football, Badminton, Kabaddi, Kho-kho, Table tennis, Cricket etc.

Practicing general and specific warm up, aerobics Practicing cardiorespiratory fitness, treadmill, run test, 9 min walk, skipping and running.

REFERENCES

- 1. Gordon Edlin, Eric Golanty, Health and Wellness, 14th Edn. Jones & Bartlett Learning, 2022
- 2. T.K.V.Desikachar, *The Heart of Yoga: Developing a Personal Practice*.
- 3. Archie J.Bahm, Yoga Sutras of Patanjali, Jain Publishing Company, 1993.
- 4. Wiseman, John Lofty, SAS Survival Handbook: The Ultimate Guide to Surviving Anywhere, Third Edition, William Morrow Paperbacks, 2014.
- 5. Thomas Hanlon, The Sports Rules Book/ Human Kinetics, 3rd ed. Human Kinetics, Inc.2014.

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities of Health/Sports/Yoga.
- 2. Institutes must provide field/facility and offer the minimum of five choices of as manyas Games/Sports.
- 3. Institutes are required to provide sports instructor / yoga teacher to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting vivavoce on the subject.

II B. Tech. – I Sem.

L T P C 3 - - 3

(23HS0835) PROBABILITY AND COMPLEX VARIABLES

COURSE OBJECTIVES

The objectives of this course

- 1. Understand the concepts of Probability, Random Variables and their characteristics (L2, L3)
- 2. Learn how to deal with multiple random variables, conditional probability, joint distribution and statistical independence.(L3, L5)
- 3. Formulate and solve engineering problems involving random variables. (L3)
- 4. Analyze limit, continuity and differentiation of functions of complex variables and Understand Cauchy-Riemann equations, analytic functions and various properties of analytic functions. (L2, L3)
- 5. Understand Cauchy theorem, Cauchy integral formulas and apply these to evaluate complex contour integrals. Classify singularities and poles; find residues and evaluate complex integrals using the residue theorem. (L3, L5)

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the concepts of Probability, Random Variables and their characteristics
- 2. Learn how to deal with random variables, conditional probability, joint distribution and statistical independence.
- 3. Formulate and solve engineering problems involving random variables.
- 4. Understand the concepts of multiple random variable and operation that may be performed on multiple random variable and single random variable.
- 5. Analyze limit, continuity and differentiation of functions of complex variables and understand Cauchy-Riemann equations, analytic functions and various properties of analytic functions.
- 6. Understand Cauchy theorem, Cauchy integral formulas and apply these to evaluate complex contour integrals. Classify singularities and poles; find residues and evaluate complex integrals using the residue theorem.

UNIT-I

Probability & Random Variable :Probability through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, Total Probability, Bayes' Theorem, Independent Events. Random variables (discrete and continuous), probability density functions, properties, mathematical expectation. Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh.

UNIT-II

Operations on Random variable: Moments-moments about the origin, Central moments, Variance and Skew, Chebyshev's inequality, moment generating function, characteristic function.

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Interval conditioning, Statistical Independence.

UNIT-III

Operations on Multiple Random variables: Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties of Gaussian random variables.

UNIT-IV

Complex Variable – Differentiation: Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method.

UNIT-V

Complex Variable – Integration: Line integral-Contour integration, Cauchy's integral theorem (Simple Case), Cauchy Integral formula, Power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series, Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine.

TEXTBOOKS

- 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2017, 44th Edition

REFERENCES

- 1. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India
- 3. Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing," 3rd Edition, Pearson Education, 2002.
- 4. B.V.Ramana, Higher Engineering Mathematics, Mc Graw Hill publishers.

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc20_ma50/preview

https://onlinecourses.nptel.ac.in/noc21_ma66/preview#:~:text=This%20course%20provides%20random%20variable,and%20simple%20Markovian%20queueing%20models.

II B. Tech. – I Sem.

L T P C 2 1 - 3

(23HS0814) UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT (Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objectives of this course

- 1. To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- 2. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- 3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)
- 2. Identify one's self, and one's surroundings (family, society nature) (L1, L2)
- 3. Apply what they have learnt to their own self in different day-to-day settings in real life (L3)
- 4. Relate human values with human relationship and human society. (L4)
- 5. Justify the need for universal human values and harmonious existence (L5)
- 6. Develop as socially and ecologically responsible engineers (L3, L6)

Course Topics

The course has 28 lectures and 14 tutorials in 5 modules. The lectures and tutorials are of 1-hour duration. Tutorial sessions are to be used to explore and practice what has been proposed during the lecture sessions.

The Teacher's Manual provides the outline for lectures as well as practice sessions. The teacher is expected to present the issues to be discussed as propositions and encourage the students to have a dialogue.

UNIT-I

Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

Lecture 2: Understanding Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself Lecture 3: self-exploration as the Process for Value Education

Lecture 4: Continuous Happiness and Prosperity -the Basic Human Aspirations

Tutorial 2: Practice Session PS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity - Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS3Exploring Natural Acceptance

UNIT-II

Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture 7: Understanding Human being as the Co-existence of the self and the body.

Lecture 8: Distinguishing between the Needs of the self and the body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.

Lecture 9: The body as an Instrument of the self

Lecture 10: Understanding Harmony in the self

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self

Lecture 11: Harmony of the self with the body

Lecture 12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body

UNIT-III

Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction

Lecture 14: 'Trust' – the Foundational Value in Relationship

Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust

Lecture 15: 'Respect' – as the Right Evaluation

Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect

Lecture 16: Other Feelings, Justice in Human-to-Human Relationship

Lecture 17: Understanding Harmony in the Society

Lecture 18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS9 Exploring Systems to fulfill Human Goal

UNIT-IV

Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)

Lecture 19: Understanding Harmony in the Nature

Lecture 20: Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature

Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature

Lecture 21: Realizing Existence as Co-existence at All Levels

Lecture 22: The Holistic Perception of Harmony in Existence

Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence.

UNIT-V

Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session)

Lecture 23: Natural Acceptance of Human Values

Lecture 24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct

- Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order
- Lecture 26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

R23

- Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies
- Lecture 28: Strategies for Transition towards Value-based Life and Profession
- Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order
- Practice Sessions for UNIT I Introduction to Value Education
- PS1 Sharing about Oneself
- PS2 Exploring Human Consciousness
- PS3 Exploring Natural Acceptance

Practice Sessions for UNIT II – Harmony in the Human Being

- PS4 Exploring the difference of Needs of self and body
- PS5 Exploring Sources of Imagination in the self
- PS6 Exploring Harmony of self with the body

Practice Sessions for UNIT III – Harmony in the Family and Society PS7 Exploring the Feeling of Trust

PS8 Exploring the Feeling of Respect

PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for UNIT IV – Harmony in the Nature (Existence)

PS10 Exploring the Four Orders of Nature

PS11 Exploring Co-existence in Existence

Practice Sessions for UNIT V – Implications of the Holistic Understanding – a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct

PS13 Exploring Humanistic Models in Education

PS14 Exploring Steps of Transition towards Universal Human Order

READINGS:

Textbook and Teachers Manual

1. The Textbook R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

2. The Teacher's Manual

3. R R Gaur, R Asthana, G P Bagaria, Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Mode of Conduct:

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, not exclusively by any one department.

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

Online Resources:

- 1. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout</u> <u>%201-</u> <u>Introduction%20to%20Value%20Education.pdf</u>
- 2. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-</u> <u>Harmony%20in%20the%20Human%20Being.pdf</u>
- 3. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout</u> <u>%203-</u><u>Harmony%20in%20the%20Family.pdf</u>
- 4. <u>https://fdp-si.aicte-</u> <u>india.org/UHV%201%20Teaching%20Material/D3-</u> <u>S2%20Respect%20July%2023.pdf</u>
- 5. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout</u> <u>%205-</u> Harmony%20in%20the%20Nature%20and%20Existence.pdf
- 6. <u>https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%203D%20D3-S2A%20Und%20Nature-Existence.pdf</u>
- 7. <u>https://fdp-si.aicte-</u> india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture% 2023- 25%20Ethics%20v1.pdf
- 8. <u>https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385</u>
- 9. <u>https://onlinecourses.swayam2.ac.in/aic22_ge23/preview</u>

R23

II B. Tech. – I Sem.

L T P C 3 - - 3

(23EC0401) SIGNALS, SYSTEMS AND STOCHASTIC PROCESSES

COURSE OBJECTIVES

The objectives of this course

- 1. Understanding the basics of signals and systems required for ECE courses.
- 2. To teach concepts of signals and systems and its analysis using different transform techniques.
- 3. To provide basic understanding of random processes which is essential for the random signals and systems encountered in communications and signal Processing areas.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the mathematical description and representation of continuous-time and discrete-time signals and systems. Classify the systems based on their properties and determine the response of them. (L2)
- 2. Analyze the frequency spectra of various continuous-time signals using different transform methods. (L4)
- 3. Apply sampling theorem to convert continuous-time signals to discrete-time signals and reconstruct back, different transform techniques to solve signals and system related problems. (L3)
- 4. Identify the suitable transform based on the system requirements. Determine the response of a system for the given input using the suitable transform. (L2)
- 5. Apply the basic concepts of probability, random variables & random signal for the spectral analysis. (L3)
- 6. Understand the concepts of various transform techniques and Random Processes. Formulate and solve engineering problems involving random processes. (L2)

UNIT-I

Signals & Systems: Basic definitions and classification of Signals and Systems (Continuous time and discrete time), operations on signals, Concepts of Convolution and Correlation of signals, Analogy between vectors and signals-Orthogonality, mean square error

Fourier series: Trigonometric & Exponential forms of Fourier series, Properties, Concept of discrete spectrum, Illustrative Problems.

UNIT-II

Fourier Transform: Definition, Computation and properties of Fourier transform for different types of signals and systems, Inverse Fourier transform. Sampling: Sampling theorem – Graphical and analytical proof for Band Limited Signals, Reconstruction of signal from its samples, Effect of under sampling – Aliasing. Illustrative Problems.

Laplace Transform: Definition, ROC, Properties, Inverse Laplace transforms, the s-plane and BIBO stability, Transfer functions, System Response to standard signals, Solution of differential equations with initial conditions, Illustrative Problems.

UNIT-III

Signal Transmission through Linear Systems: Linear system, impulse response, Response of a linear system for different input signals, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, System bandwidth,

Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between bandwidth and rise time, Energy and Power spectral densities, Illustrative Problems.

UNIT-IV

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second-Order and Wide-Sense Stationarity, (N-Order) and Strict Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process. Random Signal, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output.

UNIT-V

Random Processes – Spectral Characteristics: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross Correlation Function. Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

TEXTBOOKS

- 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002.
- 2. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009.

- 1. Signals, Systems & Communications B.P. Lathi, 2013, BSP.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002
- 3. Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, Wiley, 2005.
- 4. Matthew Sadiku and Warsame H. Ali, "Signals and Systems A primer with MATLAB", CRC Press, 2016.
- 5. Hwei Hsu, "Schaum's Outline of Signals and Systems", 4thEdition, TMH, 2019.

II B. Tech. – I Sem.

L T P C 3 - - 3

(23EC0402) ELECTRONIC DEVICES & CIRCUITS

COURSE OBJECTIVES:

The objectives of this course

- 1. Students will be able understand the basic principles of all semiconductor devices.
- 2. Able to analyze diode circuits, various biasing and small signal equivalent circuits of amplifiers, compare the performance of BJTs and MOSFETs
- 3. Able to design rectifier circuits and various amplifier circuits using BJTs and MOSFETs.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the working concept of various semiconductor devices (L1)
- 2. Understand principle of operation, characteristics and applications of semiconductor diodes, special diodes, BJTs, JFET and MOSFETs. (L2)
- 3. Applying the basic principles and solving the problems related to Semiconductor diodes, BJTs, and MOSFETs. (L3)
- 4. Analyze diode circuits for different applications such as rectifiers, clippers and clampers also analyze biasing circuits of BJTs, and MOSFETs. (L4)
- 5. Design of diode circuits and amplifiers using BJTs, and MOSFETs. (L4)
- 6. Compare the performance of various semiconductor devices. (L4)

UNIT-I

PN junction diode: Review, diode current equation, Diode resistance, Transition and Diffusion Capacitance, effect of temperature on PN junction diode, Quantitative analysis of Half-wave, Full-wave and Bridge Rectifiers with and without Filters, Ripple Factor and Regulation Characteristics, Clipping and Clamping circuits, Illustrative problems.

Special Diodes: Construction, operation and VI characteristics of Tunnel Diode, Varactor Diode, LED, LCD, Photo Diode, SCR and UJT.

UNIT-II

Review of Bipolar Junction Transistors, Characteristics, Transistor as an Amplifier and as a Switch, BJT Configurations, Limits of Operation, BJT Specifications.

Biasing and Stabilization: Operating Point, DC and AC Load Lines, Importance of Biasing, Fixed Bias, Collector to Base Bias, Self-Bias, Bias Stability, Thermal Runaway, Thermal Stability, Illustrative problems.

UNIT-III

BJT Small Signal Operation and Models- the transconductance, input resistance at the base, input resistance at the emitter, Voltage gain, separating the Signal and the DC Quantities, The Hybrid π Model, the T Model. Single Stage BJT Amplifiers - Common-Emitter (CE) amplifier without and with emitter resistance, Common-Base (CB) amplifier, Common- Collector (CC) amplifier or Emitter Follower, Problem solving.

UNIT-IV

Junction Field Effect Transistor (FET): Construction, Principle of Operation, V–I Characteristics, Comparison of BJT and FET, FET as Voltage Variable Resistor. FET biasing.

MOS Field Effect Transistors: Introduction, Device Structure and Physical Operation, CMOS, V - I Characteristics, MOSFET Circuits at DC, MOSFET as an Amplifier and as a Switch. Biasing in MOS Amplifier circuits - biasing by fixing VGS with and without source resistance, biasing using drain to gate feedback resistor, biasing using constant current source, body effect, Problem solving.

UNIT-V

MOSFET Small Signal Operation Models– the dc bias, separating the DC analysis and the signal analysis, Small signal equivalent circuit models, the transconductance, the T equivalent circuit model, Single stage MOS Amplifiers – common source (CS) amplifier without and with source resistance, common gate (CG) amplifier, source follower, Problem Solving.

TEXTBOOKS

- 1. Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits Theory and Applications", 6th Edition, Oxford Press, 2013.
- 2. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.

- 1. Donald A Neamen, "Electronic Circuits analysis and design", 3rd Edition, McGraw Hill (India), 2019.
- 2. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.
- 3. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.
- 4. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3rd edition, McGraw-Hill (India), 2010.

II B. Tech. – I Sem.

L T P C 3 - - 3

(23EC0403) DIGITAL CIRCUITS DESIGN

COURSE OBJECTIVES:

The objectives of this course

- 1. Understand the properties of Boolean algebra, logic operations, and minimization of Boolean functions.
- 2. Analyze combinational and analyze sequential logic circuits.
- 3. Understand the concepts of FSM and compare various Programmable logic devices.
- 4. Model combinational and sequential circuits using HDLs.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Describe various number systems, their representation. (L1)
- 2. Understand the properties of Boolean algebra, logic operations, concepts of FSM. (L2)
- 3. Apply techniques for minimization of Boolean functions.(L3)
- 4. Analyze combinational and Sequential logic circuits. (L4)
- 5. Compare various Programmable logic devices. (L4)
- 6. Design and Model combinational and sequential circuits using HDLs. (L5, L6)

UNIT-I

Boolean algebra, logic operations, and minimization of Boolean functions: Review of Number Systems and Codes, Representation of unsigned and signed integers, Floating Point representation of real numbers, Laws of Boolean Algebra, Theorems of Boolean Algebra, Realization of functions using logic gates, Canonical forms of Boolean Functions, Minimization of Functions using Karnaugh Maps.

UNIT-II

Combinational Logic Circuits: Combinational circuits, Design with basic logic gates, design procedure, adders, subtractors, 4-bit binary adder/ subtractor circuit, BCD adder, carry look- a-head adder, binary multiplier, magnitude comparator, data selectors, priority encoders, decoders, multiplexers, demultiplexers.

UNIT-III

Hardware Description Language: Introduction to Verilog - structural specification of logic circuits, behavioral specification of logic circuits, hierarchical Verilog Code, Verilog for combinational circuits - conditional operator, if-else statement, case statement, for loop using sequential circuits with CAD tools.

UNIT-IV

Sequential Logic Circuits: Basic architectural distinction between combinational and sequential circuits, Design procedure, latches, flip-flops, truth tables and excitation tables, timing and triggering consideration, conversion of flip- flops, design of counters, ripple counters, synchronous counters, ring counter, Johnson counter, registers, shift registers, universal shift register. Verilog constructs for sequential circuits, flip-flop with clear capability, using Verilog constructs for registers and counters.

UNIT-V

Finite State Machines and Programmable Logic Devices:

Types of FSM, capabilities and limitations of FSM, state assignment, realization of FSM using flipflops, Mealy to Moore conversion and vice-versa, reduction of state tables using partition technique, Design of sequence detector. Types of PLD's: PROM, PAL, PLA, basic structure of CPLD and FPGA, advantages of FPGAs.

TEXTBOOKS

- 1. M. Morris Mano, "Digital Design", 3rd Edition, PHI. (Unit I to IV)
- 2. Stephen Brown and ZvonkoVranesic, "Fundamentals of Digital Logic with Verilog Design", 3rd Edition, McGraw-Hill (Unit V)

- 1. Charles H. Roth, Jr, "Fundamentals of Logic Design", 4th Edition, Jaico Publishers.
- 2. ZviKohavi and NirajK.Jha, "Switching and Finite Automata Theory, 3rd Edition, Cambridge University Press, 2010.
- 3. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2ndEdition, Prentice Hall PTR.
- 4. D.P. Leach, A.P. Malvino, "Digital Principles and Applications", TMH, 7th Edition.

II B. Tech. – I Sem.

L T P C - - 3 1.5

(23EC0404) ELECTRONIC DEVICES & CIRCUITS LAB

COURSE OBJECTIVES:

The objectives of this course

- 1. Verify the theoretical concepts practically from all the experiments.
- 2. Analyse the characteristics of Diodes, BJT, MOSFET, UJT.
- 3. Design the amplifier circuits from the given specifications.
- 4. Model the electronic circuits using tools such as PSPICE/Multisim.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. *Remember the concept of various semiconductor devices(L1)*
- 2. Understand the characteristics and applications of basic electronic devices. (L2)
- 3. Plot the characteristics of electronic devices. (L3)
- 4. Analyze various biasing circuits and electronic circuits as amplifiers (L4).
- 5. Design MOSFET / BJT based amplifiers for the given specifications. (L5)
- 6. Simulate all circuits in PSPICE /Multisim. (L5).

LIST OF EXPERIMENTS: (Implement / Execute any 10 experiments).

- 1. Verify various clipping and clamper circuits using PN junction diode and draw the suitable graphs.
- 2. Study and draw the Volt Ampere characteristics of UJT and determine η , IP, Iv, VP, &Vv from the experiment.
- 3. Verification of the input and output characteristics of BJT in Common Emitter configuration experimentally and find required parameters from the graphs.
- 4. Study and draw the input and output characteristics of BJT in Common Base configuration experimentally and determine required parameters from the graphs.
- 5. Verification of the input and output characteristics of BJT in Common Collector configuration experimentally and find required parameters from the graphsStudy and draw the V- I characteristics of JFET experimentally.
- 6. Study and draw the *output* and *transfer* characteristics of MOSFET (Enhance mode) in Common Source Configuration experimentally. Find *Threshold voltage (VT), gm, & K* from the graphs.
- 7. Study and draw the *output* and *transfer* characteristics of MOSFET (Depletion mode) or JFET in Common Source Configuration experimentally. Find *IDSS*, *gm*, & *VP* from the graphs.
- 8. Design and analysis of voltage- divider bias/self-bias circuit using BJT.
- 9. Design and analysis of self-bias circuit using MOSFET.
- 10. Design a suitable circuit for switch using MOSFET/BJT.
- 11. Design a small signal amplifier using MOSFET (common source) for the given specifications. Draw the frequency response and find the bandwidth.
- 12. Design a small signal amplifier using BJT(common emitter) for the given specifications. Draw the frequency response and find the bandwidth.

Tools / Equipment Required: Software Toollike Multisim/ Pspice or Equivalent,

DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

II B. Tech. – I Sem.

L T P C - - 3 1.5

(23EC0405) DIGITAL CIRCUITS & SIGNAL SIMULATION LAB

COURSE OBJECTIVES:

The objectives of this course

- 1. Verify the truth tables of various logic circuits.
- 2. Design sequential/combinational circuit using Hardware Description Language and verify their functionality.
- 3. Simulate various Signals and Systems through MATLAB
- 4. Analyze the output of a system when it is excited by different types of deterministic and random signals.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Verify thr truth tables of various logic circuits(L2)
- 2. Understand how to simulate different types of signals and system response(L2).
- 3. Design sequential and combinational logic circuits and .verify their functionality(L3, L4)
- 4. Analyze the response of different systems when they are excited by different signals and plot power spectral density of signals(L4)
- 5. Generate signals according to the given specifications(L5).
- 6. Analyze the stability of the system from S-plane(L4).

List of Experiments:

PART A

- 1. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital Trainer Kit.
- 2. Verification of functional table of 3 to 8-line Decoder /De-multiplexer
- 3. 4 variable logic function verification using 8 to1 multiplexer.
- 4. Design full adder circuit and verify its functional table.
- 5. Design a four-bit ring counter using D Flip–Flops/JK Flip Flop and verify output.
- 6. Design a four-bit Johnson's counter using D Flip-Flops/JK Flip Flops and verify output
- 7. Verify the operation of 4-bit Universal Shift Register for different Modes of operation.
- 8. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-Flip-Flops and Test It with a low frequency clock and sketch the output waveforms.
- 9. Design MOD–8 synchronous counter using T Flip-Flop and verify the result and sketch the output waveforms.
- 10. (a) Draw the circuit diagram of a single bit comparator and test the output
- (b) Construct 7 Segment Display Circuit Using Decoder and7 Segment LED and test it.
- Note: Design and verify combinational and sequential circuits using Hardware Description Language

1. M. Morris Mano, "Digital Design", 3rd Edition, PHI

PART B

List of Experiments:

- 1. Write a program to generate various Signals and Sequences: Periodic and Aperiodic, Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc function.
- 2. Perform operations on Signals and Sequences: Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Write a program to find the trigonometric & exponential Fourier series coefficients of a rectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightings- Plot the discrete spectrum of the signal.
- 4. Write a program to find Fourier transform of a given signal. Plot its amplitude and phase spectrum.
- 5. Write a program to convolve two discrete time sequences. Plot all the sequences.
- 6. Write a program to find autocorrelation and cross correlation of given sequences.
- 7. Write a program to verify Linearity and Time Invariance properties of a given Continuous System.
- 8. Write a program to generate discrete time sequence by sampling a continuous time signal. Show that with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
- 9. Write a program to find magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
- 10. Write a program to generate Complex Gaussian noise and find its mean, variance, Probability Density Function (PDF) and Power Spectral Density (PSD).
- 11. Generate a Random data (with bipolar) for a given data rate (say 10kbps). Plot the same for a time period of 0.2 sec.
- 12. To plot pole-zero diagram in S-plane of given signal/sequence and verify its stability.
- Note: Any 10 experiments. All the experiments are to be simulated using MATLAB or equivalent software.

REFERENCES:

Stephen J. Chapman, "MATLAB Programming for Engineers", Cengage, November 2012.

2 2

T P C

L

- 1

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

II B. Tech. – I Sem.

(23CS0549) PYTHON PROGRAMMING

COURSE OBJECTIVES

The objectives of this course

- 1. Introduce core programming concepts of Python programming language.
- 2. Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries
- 3. Implement Functions, Modules and Regular Expressions in Python Programming and to create practical and contemporary applications using these

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the basics of Python syntax involves grasping its fundamental elements: variables, data types, control structures, functions, modules, and their applications in various scenarios (L1)
- 2. Summarize the features of lists, in Python and how Python programming concepts can be solve computational (L2)
- 3. Interpret the functions and Object Oriented Programming Concepts in python (L3)
- 4. Develop skills to implement the modules, libraries and exception handling (L4)
- 5. Exhibit competence in implementing and manipulating fundamental data structures such as lists, tuples, sets, dictionaries (L5)
- 6. Utilize different functional programming and file handling operations in python and can demonstrate the JSON applications (L6)

UNIT-I

History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook.

Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language.

Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

Sample Experiments:

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- 3. Write a program to swap two numbers without using a temporary variable.
- 4. Demonstrate the following Operators in Python with suitable examples.
 i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators iv) Logical Operators v) Bit wise Operators vi) Ternary Operator vii) Membership Operators
 - viii) Identity Operators
- 5. Write a program to add and multiply complex numbers
- 6. Write a program to print multiplication table of a given number.

UNIT-II

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments.

Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

Sample Experiments:

- 7. Write a program to define a function with multiple return values.
- 8. Write a program to define a function using default arguments.
- 9. Write a program to find the length of the string without using any library functions.
- 10. Write a program to check if the substring is present in a given string or not.
- 11. Write a program to perform the given operations on a list:
 - i. additionii. insertioniii. slicing
- 12. Write a program to perform any 5 built-in functions by taking any list.

UNIT-III

Dictionaries: Creating Dictionary, Accessing and Modifying key:value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozenset.

Sample Experiments:

- 13. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
- 14. Write a program to count the number of vowels in a string (No control flow allowed).
- 15. Write a program to check if a given key exists in a dictionary or not.
- 16. Write a program to add a new key-value pair to an existing dictionary.
- 17. Write a program to sum all the items in a given dictionary.

UNIT-IV

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

Sample Experiments:

- 18. Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- 19. Python program to print each line of a file in reverse order.

- 20. Python program to compute the number of characters, words and lines in a file.
- 21. Write a program to create, display, append, insert and reverse the order of the items in the array.
- 22. Write a program to add, transpose and multiply two matrices.
- 23. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

UNIT-V

Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

- 24. Python program to check whether a JSON string contains complex object or not.
- 25. Python Program to demonstrate NumPy arrays creation using array () function.
- 26. Python program to demonstrate use of ndim, shape, size, dtype.
- 27. Python program to demonstrate basic slicing, integer and Boolean indexing.
- 28. Python program to find min, max, sum, cumulative sum of array
- 29. Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
 - a) Apply head () function to the pandas data frame
 - b) Perform various data selection operations on Data Frame
- 30. Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib

REFERENCES

- 1. Gowri shankar S, Veena A., Introduction to Python Programming, CRC Press.
- 2. Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2nd Edition, Pearson, 2024
- 3. Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

Online Learning Resources/Virtual Labs:

- 1. https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2. <u>https://www.coursera.org/learn/python?specialization=python#syllabus</u>

II B. Tech. – I Sem.

L T P C 2 - - -

(23HS0805) ENVIRONMENTAL SCIENCE

COURSE OBJECTIVES

The objectives of this course

- 1. To make the students to get awareness about the environment.
- 2. To understand the importance of protecting natural ecosystems for future.
- 3. To save earth from the inventions by Engineers.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Make the students to get awareness about the environment and its components.
- 2. Understand the importance of protecting natural ecosystems.
- 3. Understand various types of pollutions and their effects.
- 4. Understand the various engineering techniques to protect the environment.
- 5. Make awareness about the social issues and laws of environmental protection.
- 6. Understand the concept of sustainable development and role of Engineering *Technology in environment and human health.*

UNIT-I

Multidisciplinary Nature of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT-II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem.
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation : Introduction, Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat

loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT-III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT-IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies –Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT-V

Human Population and the Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/ mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc.

TEXTBOOKS

- 1. Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S. Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K. Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.

- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited

II B. Tech. – II Sem.

L T P C 2 - - 2

(23HS0848) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objectives of this course

- 1. To inculcate the basic knowledge of microeconomics and financial accounting
- 2. To make the students learn how demand is estimated for different products, inputoutput relationship for optimizing production and cost
- 3. To Know the Various types of market structure and pricing methods and strategy
- 4. To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- 5. To provide fundamental skills on accounting and to explain the process of preparing financial statements.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the nature of managerial economics and the role of it in business firms.(L1, L2)
- 2. Identify the determinants of demand and apply cost analysis under different market conditions.(L2,L3)
- 3. Integrate the concepts of price and output decisions of business firms.(L6)
- 4. Appreciate the importance of market structures and implement appropriate price and output decisions.(L2)
- 5. Assess the financial statements of a firm and the financial performance of the firm through the financial statements.(15)
- 6. *Measure operating, investing and financial performance of a firm.(L5)*

UNIT-I

Managerial Economics: Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting- Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT-II

Production and Cost Analysis: Introduction – Nature, meaning, significance, functions and advantages. Production Function– Least- cost combination– Short run and long run Production Function- Isoquants and Is costs, Cost & Break-Even Analysis - Cost concepts and Cost behaviour-Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems).

UNIT-III

Business Organizations and Markets: Introduction – Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets -Perfect and Imperfect Competition - Features of Perfect Competition Monopoly- Monopolistic Competition– Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT-IV

Capital Budgeting: Introduction – Nature, meaning, significance. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT-V

Financial Accounting and Analysis: Introduction – Concepts and Conventions- Double-Entry Bookkeeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). Introduction to Financial Analysis - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

TEXTBOOKS

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH.

REFERENCES

- 1. Ahuja Hl Managerial economics Schand.
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt https://www.slideshare.net/rossanz/production-and-cost-45827016 https://www.slideshare.net/darkyla/business-organizations-19917607 https://www.slideshare.net/balarajbl/market-and-classification-of-market https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396 https://www.slideshare.net/ashu1983/financial-accounting

II B. Tech. – II Sem.

L T P C 2 - - 2

(23HS0850) ORGANISATIONAL BEHAVIOUR (Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objectives of this course

- 1. To enable student's comprehension of organizational behavior
- 2. To offer knowledge to students on self-motivation, leadership and management
- 3. To facilitate them to become powerful leaders
- 4. To Impart knowledge about group dynamics
- 5. To make them understand the importance of change and development

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Define the Organizational Behaviour, its nature and scope.(L1)
- 2. Understand the nature and concept of Organizational behaviour.(L2)
- 3. Apply theories of motivation to analyse the performance problems.(L3)
- 4. Analyse the different theories of leadership.(L4)
- 5. Evaluate group dynamics (L5)
- 6. *Develop as powerful leader(L6)*

UNIT-I

Introduction to Organizational Behavior : Meaning, definition, nature, scope and functions - Organizing Process – Making organizing effective -Understanding Individual Behaviour –Attitude - Perception - Learning – Personality.

UNIT-II

Motivation and Leading : Theories of Motivation- Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Vroom's theory of expectancy – Mc Cleland's theory of needs–Mc Gregor's theory X and theory Y– Adam's equity theory.

UNIT-III

Organizational Culture: Introduction – Meaning, scope, definition, Nature - Organizational Climate - Leadership - Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management -Evaluating Leader.

UNIT-IV

Group Dynamics: Introduction – Meaning, scope, definition, Nature- Types of groups - Determinants of group behaviour - Group process – Group Development - Group norms - Group cohesiveness - Small Groups - Group decision making - Team building - Conflict in the organization– Conflict resolution.

UNIT-V

Organizational Change and Development: Introduction –Nature, Meaning, scope, definition and functions- Organizational Culture - Changing the Culture – Change Management – Work Stress Management - Organizational management – Managerial implications of organization's change and development.

TEXTBOOKS

- 1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12 Th edition.
- 2. P Subba Ran, Organisational Behaviour, Himalya Publishing House.

REFERENCES

- 1. McShane, Organizational Behaviour, TMH
- 2. Nelson, Organisational Behaviour, Thomson.
- 3. Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson.
- 4. Aswathappa, Organisational Behaviour, Himalaya.

Online Learning Resources:

https://www.slideshare.net/Knight1040/organizational-culture 9608857s://www.slideshare.net/AbhayRajpoot3/motivation-165556714 https://www.slideshare.net/harshrastogi1/group-dynamics-159412405 https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951

II B. Tech. – II Sem.

L T P C 2 - - 2

(23HS0851) BUSINESS ENVIRONMENT (Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objectives of this course

- 1. To make the student to understand about the business environment
- 2. To enable them in knowing the importance of fiscal and monitory policy
- 3. To facilitate them in understanding the export policy of the country
- 4. To Impart knowledge about the functioning and role of WTO
- 5. To Encourage the student in knowing the structure of stock markets

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Define Business Environment and its Importance. (L1)
- 2. Understand various types of business environment.(L2)
- 3. Apply the knowledge of Money markets in future investment.(L3)
- 4. Analyse India's Trade Policy (L4)
- 5. Evaluate fiscal and monitory policy (L5)
- 6. Develop a personal synthesis and approach for identifying business opportunities.(L6)

UNIT-I

Overview of Business Environment: Introduction – meaning Nature, Scope, significance, functions and advantages. Types- Internal &External, Micro and Macro. Competitive structure of industries - Environmental analysis- advantages & limitations of environmental analysis.

UNIT-II

Fiscal & Monetary Policy: Introduction – Nature, meaning, significance, functions and advantages. Public Revenues - Public Expenditure - Evaluation of recent fiscal policy of GOI. Highlights of Budget- Monetary Policy - Demand and Supply of Money –RBI -Objectives of monetary and credit policy - Recent trends- Role of Finance Commission.

UNIT-III

India's Trade Policy: Introduction – Nature, meaning, significance, functions and advantages. Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank -Balance of Payments– Structure & Major components -Causes for Disequilibrium in Balance of Payments - Correction measures

UNIT-IV

World Trade Organization: Introduction – Nature, significance, functions and advantages. Organization and Structure - Role and functions of WTO in promoting world trade - GATT -Agreements in the Uruguay Round –TRIPS, TRIMS - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

UNIT-V

Money Markets and Capital Markets: Introduction – Nature, meaning, significance, functions and advantages. Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI – Stock Exchanges - Investor protection and role of SEBI, Introduction to international finance.

TEXTBOOKS

- 1. Francis Cherunilam, International Business: Text and Cases, Prentice Hall of India.
- 2. K. Aswathappa, Essentials of Business Environment: Texts and Cases & Exercises 13th Revised Edition.HPH

REFERENCES

- 1. K. V. Sivayya, V. B. M Das, Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.
- 2. Sundaram, Black, International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.
- Chari. S. N, International Business, Wiley India.
 E. Bhattacharya, International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245 https://www.slideshare.net/rbalsells/fiscal-policy-ppt https://www.slideshare.net/aguness/monetary-policy-presentationppt https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982 https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt https://www.slideshare.net/viking2690/wto-ppt-60260883 https://www.slideshare.net/prateeknepal3/ppt-mo

II B. Tech. – II Sem.

L T P C 3 - - 3

(23EE0212) LINEAR CONTROL SYSTEMS

COURSE OBJECTIVES:

The objectives of this course

- 1. Introduce the basic principles and applications of control systems.
- 2. Learn the time response and steady state response of the systems.
- 3. Know the time domain analysis and solutions to time invariant systems.
- 4. Understand different aspects of stability analysis of systems in frequency domain.
- 5. Understand the concept of state space, controllability and observability.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Identify open and closed loop control system and Represent simple systems in transfer function and state variable forms
- 2. Analyse simple systems in time domain.
- 3. Analyse simple systems in frequency domain
- 4. Design Compensators for given control systems using Lead, Lag networks
- 5. Infer the stability of systems in time and frequency domain.
- 6. Interpret characteristics of the system through state space approach and find out solution for simple control problems

UNIT-I

Control Systems Concepts: Open loop and closed loop control systems and their differences-Examples of control systems- Classification of control systems, Feedback characteristics, Effects of positive and negative feedback, Mathematical models – Differential equations of translational and rotational mechanical systems and electrical systems, Analogous Systems, Block diagram reduction methods – Signal flow graphs - Reduction using Mason's gain formula. Controller components, DC Servomotor and AC Servomotor- their transfer functions, Synchros.

UNIT-II

Time Response Analysis: Step Response - Impulse Response - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants, Study of effects and Design of P, PI, PD and PID Controllers on second order system.

UNIT-III

Stability Analysis in Time Domain: The concept of stability – Routh's stability criterion – Stability and conditional stability - limitations of Routh's stability. The Root locus concept - construction of root loci-effects of adding poles and zeros to G(s) H(s) on the root loci.

UNIT-IV

Frequency Response Analysis: Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram - Stability Analysis from Bode Plots. Polar Plots- Nyquist Plots- Phase margin and Gain margin-Stability Analysis. Compensation techniques – Study of Effects and Design of Lag, Lead, Lag-Lead Compensator design in frequency Domain on a second order system.

UNIT-V

State Space Analysis of Continuous Systems: Concepts of state, state variables and state model - differential equations & Transfer function models - Block diagrams. Diagonalization, Transfer function from state model, solving the Time invariant state Equations- State Transition Matrix and its Properties. System response through State Space models. The concepts of controllability and observability,

TEXTBOOKS

- 1. Modern Control Engineering by Katsuhiko Ogata, Prentice Hall of India Pvt. Ltd., 5thedition, 2010.
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International (P) Limited Publishers, 5th edition, 2007.

REFERENCES

- 1. Control Systems Principles & Design by M.Gopal, 4th Edition, McGraw Hill Education, 2012.
- 2. Automatic Control Systems by B. C. Kuo and Farid Golnaraghi, John wiley and sons, 8th edition,2003.
- 3. Feedback and Control Systems, Joseph J Distefano III, Allen R Stubberud & Ivan J Williams, 2nd Edition, Schaum's outlines, McGraw Hill Education,2013.
- 4. Control System Design by Graham C. Goodwin, Stefan F. Graebe and Mario E. Salgado, Pearson, 2000.
- 5. Feedback Control of Dynamic Systems by Gene F. Franklin, J.D. Powell and Abbas Emami- Naeini, 6th Edition, Pearson,2010.

II B. Tech. – II Sem.

L T P C 3 - - 3

(23EC0407) EM WAVES AND TRANSMISSION LINES

COURSE OBJECTIVES:

The objectives of this course

- 1. To understand and analyze different laws and theorems of electrostatic fields.
- 2. To study and analyze different laws and theorems of magnetostatic fields.
- 3. Analyzing Maxwell's equations in different forms.
- 4. To learn the concepts of wave theory and its propagation through various mediums.
- 5. To get exposure to the properties of transmission lines.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Apply the laws & theorems of electrostatic fields to solve the related problems(L1,L2,L3)
- 2. Analysis and application of magnetostatic laws and Theorems(L4)
- 3. Analyze maxwell's Equations in different forms(L4)
- 4. Learn the concepts of wave theory and its propagation through various mediums (L2)
- 5. Understand the properties of transmission lines and their applications. (L2)
- 6. *Apply Maxwell's equation to represent EM wave equations(L3)*

UNIT-I

Review of Co-ordinate Systems,

Electrostatics: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems. Convection and Conduction Currents, Dielectric Constant, Poisson's and Laplace's Equations; Capacitance – Parallel Plate, Coaxial Capacitors, Illustrative Problems.

UNIT-II

Magnetostatics: Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Inductances and Magnetic Energy, Illustrative Problems.

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer EMF, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements, Conditions at a Boundary Surface, Illustrative Problems.

UNIT-III

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossy dielectrics, lossless dielectrics, free space, wave propagation in good conductors, skin depth, Polarization & Types, Illustrative Problems.

Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem, Illustrative Problems.

UNIT-IV

Transmission Lines - I : Types, Parameters, T & π Equivalent Circuits, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line, Lossless lines, distortion less lines, Illustrative Problems.

UNIT-V

Transmission Lines – II: Input Impedance Relations, Reflection Coefficient, VSWR, Average Power, Shorted Lines, Open Circuited Lines, and Matched Lines, Low loss radio frequency and UHF Transmission lines, UHF Lines as Circuit Elements, Smith Chart – Construction and Applications, Quarter wave transformer, Single Stub Matching, Illustrative Problems.

TEXTBOOKS

- 1. Elements of Electromagnetics, Matthew N.O. Sadiku, 4th Edition, Oxford University Press, 2008.
- 2. Electromagnetic Waves and Radiating Systems, E.C. Jordan and K.G. Balmain, 2nd Edition, PHI, 2000.

REFERENCES

- 1. Electromagnetic Field Theory and Transmission Lines, G. S. N. Raju, 2nd Edition, Pearson Education, 2013.
- 2. Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck, 7th Edition, Tata McGraw Hill, 2006.
- 3. Electromagnetics, John D. Krauss, 3rd Edition, McGraw Hill, 1988.
- 4. Networks, Lines, and Fields, John D. Ryder, 2nd Edition, PHI publications, 2012.

II B. Tech. – II Sem.

L T P C 3 - - 3

(23EC0408) ELECTRONIC CIRCUITS ANALYSIS

COURSE OBJECTIVES:

The objectives of this course

- 1. Understand the characteristics of Differential amplifiers, feedback and power amplifiers.
- 2. Analyze the response of tuned amplifiers
- 3. Categorize different oscillator circuits based on the application
- 4. Design the electronic circuits for the given specifications and for a given application.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Recognize the terminology used in analog circuits and Understand the characteristics of various amplifiers and oscillators. (L1, L2)
- 2. Examine the frequency response of multistage and differential amplifier circuits using BJT & MOSFETs at low and high frequencies. (L3)
- 3. Investigate different feedback and power amplifier circuits based on the application. (L4)
- 4. Derive the expressions for parameters like frequency of oscillations and period of oscillator and multivibrator circuits. (L4)
- 5. Evaluate the performance of different tuned amplifiers (L5)
- 6. Design analog circuits for the given specifications and application. (L6)

UNIT-I

Multistage & Differential Amplifiers: Introduction, Classification of Amplifiers, Distortion in amplifiers, Coupling Schemes, RC Coupled Amplifier using BJT, Cascaded RC Coupled BJT Amplifiers, Cascode amplifier, Darlington pair, the MOS Differential Pair, Small-Signal Operation of the MOS Differential Pair, The BJT Differential Pair, and other Non ideal Characteristics of the Differential Amplifier.

UNIT-II

Frequency Response: Low-Frequency Response of the CS and CE Amplifiers, Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT, High-Frequency Response of the CE, Emitter follower, CS, CD, $f\beta$, fT and gain bandwidth product.

UNIT-III

Feedback Amplifiers: Introduction, The General Feedback Structure, Some Properties of Negative Feedback, The Four Basic Feedback Topologies, Series—Shunt, Series—Series, Shunt—Shunt, Shunt—Series.

Oscillators: General Considerations, Phase Shift Oscillator, Wien-Bridge Oscillator, LC Oscillators, Relaxation Oscillator, Crystal Oscillators, Illustrative Problems.

UNIT-IV

Power Amplifiers: Introduction, Class A amplifiers (Series fed, Transformer coupled, Push pull), Second Harmonic distortion, Class B amplifiers (Push pull, Complementary symmetry), Crossover distortion and Class AB operation, Class C amplifiers, Power BJTs, MOS power transistors.

UNIT-V

Tuned Amplifiers: Introduction, single Tuned Amplifiers – Q-factor, frequency response, Double Tuned Amplifiers – Q-factor, frequency response, Concept of stagger tuning and synchronous tuning.

Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.

TEXTBOOKS

- 1. Adel. S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits," 6th Edition, Oxford University Press, 2011.
- 2. J. Millman, H. Taub and Mothiki S. PrakashRao Pulse, Digital and Switching Waveforms –2nd Ed., TMH, 2008.
- 3. Millman, C Chalkias, "Integrated Electronics", 4thEdition, McGraw Hill Education (India) Private Ltd., 2015.

REFERENCES

- 1. Behzad Razavi, "Fundamentals of Micro Electronics", Wiley, 2010.
- 2. Donald A Neamen, "Electronic Circuits Analysis and Design," 3rdEdition, McGraw Hill (India), 2019.
- 3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory", 9th Edition, Pearson/Prentice Hall, 2006.

II B. Tech. – II Sem.

L T P C 3 - - 3

(23EC0409) ANALOG AND DIGITAL COMMUNICATIONS

COURSE OBJECTIVES

The objectives of this course

- 1. Introduce various modulation and demodulation techniques of analog and digital communication systems.
- 2. Analyze different parameters of analog and digital communication techniques.
- 3. Understand function of various stages of AM, FM transmitters and Know characteristics of AM &FM receivers.
- 4. Analyze the performance of various digital modulation techniques in the presence of *AWGN*.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Identify the terminology used in analog and digital communication technique for transmission of information/data.(L1)
- 2. Explain the basic operation of modulation and demodulation techniques in analog and digital communications.(L2)
- 3. Compute various parameters of baseband and passband transmission schemes by applying basic engineering knowledge.(L3)
- 4. Analyze the performance of different modulation and demodulation techniques to solve complex problems in the presence of noise.(L4)
- 5. To calculate the performance of all analog and digital modulation techniques to know the merits and demerits of each one of them in terms of bandwidth and power efficiency.(L5)
- 6. To analyze the required modulation technique for different channels.(L5)

UNIT-I

Amplitude Modulation: Need for modulation, Amplitude Modulation - Time and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves - Switching modulator, Detection of AM Waves - Envelope detector, DSBSC modulation - time and frequency domain description, Generation of DSBSC Waves - Balanced Modulators, Coherent detection of DSB-SC Modulated waves, COSTAS Loop, SSB modulation - time and frequency domain description, frequency discrimination and Phase discrimination methods for generating SSB, Demodulation of SSB Waves, principle of Vestigial side band modulation.

UNIT-II

Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave using Bessel functions, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Signal- Armstrong Method, Detection of FM Signal: Balanced slope detector, Phase locked loop, Comparison of FM and AM., Concept of Pre-emphasis and deemphasis

UNIT-III

Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters

Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super heterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver, Comparison of AM and FM Receivers.

UNIT-IV

Introduction to Noise: Types of Noise, Receiver Model, Noise in AM, DSB, SSB, and FM Receivers.

Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM. Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Companding, Delta Modulation, DPCM, Noise in PCM and DM.

UNIT-V

Digital Modulation Techniques: Coherent Digital Modulation Schemes – ASK, BPSK, BFSK, QPSK, Non-coherent BFSK, DPSK. M-ary Modulation Techniques, Power Spectra, Bandwidth Efficiency.

Baseband Transmission and Optimal Reception of Digital Signal: A Baseband Signal Receiver, Probability of Error, Optimum Receiver, Coherent Reception, ISI, Eye Diagrams.

TEXTBOOKS

1. Simon Haykin, "Communication Systems", JohnWiley& Sons, 4th Edition, 2004.

2. Wayne Tomasi - Electronics Communication Systems-Fundamentals through Advanced, 5thEd., PHI, 2009

3. B. P. Lathi, Zhi Ding "Modern Digital and Analog Communication Systems", Oxford press, 2011.

REFERENCES

- 1. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley & Sons, 1999.
- 2. Bernard Sklar, F. J. harris"Digial Communications: Fundamentals and Applications", Pearson Publications, 2020.
- 3. Taub and Schilling, "Principles of Communication Systems", Tata McGraw Hill, 2007.

II B. Tech. – II Sem.

L T P C - - 3 1.5

(23EC0410) ELECTRONIC CIRCUITS ANALYSIS LAB

COURSE OBJECTIVES:

The objectives of this course

- 1. Plot the characteristics of Differential amplifiers, feedback and power amplifiers.
- 2. Analyze the response of tuned amplifiers and multivibrators.
- 3. Categorize different oscillator circuits based on the application.
- 4. Design the electronic circuits for the given specifications and for a given application.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Know about the usage of equipment/components/software tools used to conduct experiments in analog circuits. (L2)
- 2. Know about the electrical specifications of equipment and components used to conduct experiments in analog circuits. (L2)
- 3. Conduct the experiment based on the knowledge acquired in the theory about various analog circuits using BJT/MOSFETs to find the important parameters of the circuit experimentally. (L3)
- 4. Analyze the given analog circuit to find required important metrics of it theoretically. *(L4)*
- 5. Compare the experimental results with that of theoretical ones and infer the conclusions. (L4)
- 6. Design the circuit for the given specifications. (L6)

List of Experiments:

- 1. Design and Analysis of Darlington pair.
- 2. Frequency response of CE CC multistage Amplifier
- 3. Design and Analysis of Cascode Amplifier.
- 4. Frequency Response of Differential Amplifier
- 5. Design and Analysis of any two topologies of feedback amplifies and find the frequency response of it.
- 6. Design and Analysis of Class A power amplifier.
- 7. Design and Analysis of Class AB amplifier.
- 8. Design and Analysis of RC phase shift oscillator.
- 9. Design and Analysis of LC Oscillator
- 10. Frequency Response of Single Tuned amplifier
- 11. Design a Bistable Multivibrator and analyze the effect of commutating capacitors anddraw the wave forms at base and collector of transistors.
- 12. Design an Astable Multivibrator and draw the wave forms at base and collector of transistors.
- 13. Design a Monostable Multivibrator and draw the input and output waveforms.
- 14. Draw the response of Schmitt trigger for gain of greater than and less than one.

Note: At least 12 experiments shall be performed.

Faculty members who are handling the laboratory shall see that students are given design specifications for a given circuit appropriately and monitor the design and analysis aspects of the circuit.

II B. Tech. – II Sem.

L T P C - - 3 1.5

(23EC0411) ANALOG AND DIGITAL COMMUNICATIONS LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Understand the basics of analog and digital modulation techniques.
- 2. Integrate theory with experiments so that the students appreciate the knowledge gained from the theory course.
- 3. Design and implement different modulation and demodulation techniques and their applications.
- 4. Develop cognitive and behavioral skills for performance analysis of various modulation techniques.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Know about the equipments/components used to conduct different analog and digital modulation techniques.(L2)
- 2. Conduct the experiment based on the knowledge acquired in theory about modulation and demodulation schems to find the important metrics of the communication system experimentally.(L3)
- 3. Analyze the performance of a given modulation technique and to find the parameters like Bandwidth and power.(L4)
- 4. Compare the experimental results with that of theoretical ones and infer the conclusions. (L4)
- 5. Analyze the components in radio receivers and to measure the characteristic parameters of radio receivers.(L4)
- 6. Design the digital modulation schemes for wired communication and wireless communication.(L6)

List of Experiments:

Design the circuits and verify the following experiments taking minimum of six from each section shown below.

Section-A

- 1. AM Modulation and Demodulation
- 2. DSB-SC Modulation and Demodulation
- 3. Frequency Division Multiplexing
- 4. FM Modulation and Demodulation
- 5. Radio receiver measurements
- 6. PAM Modulation and Demodulation
- 7. PWM Modulation and Demodulation
- 8. PPM Modulation and Demodulation

Section-B

- 1. Sampling Theorem.
- 2. Time Division Multiplexing
- 3. Delta Modulation and Demodulation
- 4. PCM Modulation and Demodulation

- 5. BPSK Modulation and Demodulation
- 6. BFSK Modulation and Demodulation
- 7. QPSK Modulation and Demodulation
- 8. DPSK Modulation and Demodulation

Note: Faculty members (who are handling the laboratory) are requested to instruct the students not to use readymade kits for conducting the experiments. They are advised to make the students work in the laboratory by constructing the circuits and analyzing them during the lab sessions.

II B. Tech. – II Sem.

(23HS0818) SOFT SKILLS

L T P C - 1 2 2

(Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objectives of this course

- 1. To encourage all round development of the students by focusing on soft skills
- 2. To make the students aware of critical thinking and problem-solving skills
- 3. To enhance healthy relationship and understanding within and outside an organization
- 4. To function effectively with heterogeneous teams

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. List out various elements of soft skills (L1, L2)
- 2. Describe methods for building professional image (L1, L2)
- 3. Apply critical thinking skills in problem solving (L3)
- 4. Analyse the needs of an individual and team for well-being (L4)
- 5. Assess the situation and take necessary decisions (L5)
- 6. Create a productive workplace atmosphere using social and work-life skills ensuring personal and emotional well-being (L6)

UNIT-I

Soft Skills & Communication Skills: Soft Skills - Introduction, Need - Mastering Techniques of Soft Skills – Communication Skills -Significance, process, types - Barriers of communication - Improving techniques.

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self-expression – articulating with felicity.

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speechesconvincing- negotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation.

UNIT-II

Critical Thinking: Active Listening – Observation – Curiosity – Introspection – Analytical Thinking – Open- mindedness – Creative Thinking - Positive thinking - Reflection

Activities: Gathering information and statistics on a topic - sequencing – assorting – reasoning – critiquing issues –placing the problem – finding the root cause - seeking viable solution – judging with rationale – evaluating the views of others - Case Study, Story Analysis

UNIT-III

Problem Solving & Decision Making: Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Team building - Effective decision making in teams – Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision. Case Study & Group Discussion

UNIT-IV

Emotional Intelligence & Stress Management: Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations. Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT-V

Corporate Etiquette

Etiquette- Introduction, concept, significance - Corporate etiquette - meaning, modern etiquette, benefits - Global and local culture sensitivity - Gender Sensitivity - Etiquette in interaction- Cell phone etiquette - Dining etiquette - Netiquette - Job interview etiquette - Corporate grooming tips -Overcoming challenges

Activities

Providing situations to take part in the Role Plays where the students will learn about bad and good manners and etiquette - Group Activities to showcase gender sensitivity, dining etiquette etc. - Conducting mock job interviews - Case Study - Business Etiquette Games

NOTE-:

- 1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.
- 2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear.

TEXTBOOKS

- 1. Mitra Barun K, Personality Development and Soft Skills, Oxford University Press, Pap/Cdr edition 2012
- 2. Dr Shikha Kapoor, Personality Development and Soft Skills: Preparing for Tomorrow, I K International Publishing House, 2018

REFERENCES

- 1. Sharma, Prashant, Soft Skills: Personality Development for Life Success, BPB Publications 2018.
- 2. Alex K, Soft Skills S.Chand & Co, 2012 (Revised edition)

- 3. Gajendra Singh Chauhan & Sangeetha Sharma, Soft Skills: An Integrated Approach to Maximise Personality Published by Wiley, 2013
- 4. Pillai, Sabina & Fernandez Agna, Soft Skills and Employability Skills, Cambridge University Press, 2018
- 5. Soft Skills for a Big Impact (English, Paperback, Renu Shorey) Publisher: Notion Press
- 6. Dr. Rajiv Kumar Jain, Dr. Usha Jain, Life Skills (Paperback English) Publisher : Vayu Education of India, 2014

Online Learning Resources:

- 1. https://youtu.be/DUlsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q
- 2. https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hDl7lU
- 4. https://youtu.be/gkLsn4ddmTs
- 5. https://youtu.be/2bf9K2rRWwo
- 6. https://youtu.be/FchfE3c2jzc
- 7. <u>https://www.businesstrainingworks.com/training-resource/five-free-business-etiquette-training-games/</u>
- 8. https://onlinecourses.nptel.ac.in/noc24_hs15/preview
- 9. https://onlinecourses.nptel.ac.in/noc21_hs76/preview

II B. Tech. – II Sem.

L T P C 1 - 2 2

(23HS0815) DESIGN THINKING & INNOVATION (Common to All Branches of Engineering)

COURSE OBJECTIVES:

The objective of this course is

To familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Define the concepts related to design thinking. (L1, L2)
- 2. Explain the fundamentals of Design Thinking and innovation (L1, L2)
- 3. Apply the design thinking techniques for solving problems in various sectors. (L3)
- 4. Analyse to work in a multidisciplinary environment (L4)
- 5. Evaluate the value of creativity (L5)
- 6. Formulate specific problem statements of real time issues (L3, L6)

UNIT-I

Introduction to Design Thinking: Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT-II

Design Thinking Process: Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT-III

Innovation: Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT-IV

Product Design: Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications- Innovation towards product design- Case studies.

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT-V

Design Thinking in Business Processes: Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs- Design thinking for Startups- Defining and testing Business Models and Business Cases- Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

TEXTBOOKS

- 1. Tim Brown, Change by design, Harper Bollins (2009)
- 2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons.

REFERENCES

- 1. David Lee, Design Thinking in the Classroom, Ulysses press
- 2. Shrutin N Shetty, Design the Future, Norton Press
- 3. William Lidwell, Universal Principles of Design- Kritinaholden, Jill Butter.
- 4. Chesbrough.H, The Era of Open Innovation 2013

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

COMMUNITY SERVICE PROJECT

.....Experiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development.
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will benefit with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in 6 weeks for the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, housewives, etc
- A logbook must be maintained by each of the students, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty in charge.
- An evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.

- The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project reports should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training.

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - $\circ\,$ Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills.

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity.

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research.

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment.
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals.
- New energy, enthusiasm and perspectives applied to community work.
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions, and modifications. Colleges are expected to focus on specific local issues for this kind of project. The students are expected to carry out these projects with involvement, commitment, responsibility, and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of project. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting should be

ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programs

Programs for School Children

- 1. Reading Skill Program (Reading Competition)
- 2. Preparation of Study Materials for the next class.

- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Program on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Program on Socially relevant

themes. Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social

Entrepreneurship General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important

days Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality

Development Common

Programs

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition

- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also, with the Governmental Departments. If the program is rolled out, the District Administration could be roped in for the successful deployment of the program.
- An in-house training and induction program could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below-listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to experiential learning about the community and its dynamics. Programs could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks' works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University. Throughout the Community Service Project, a daily logbook need to be maintained by the students batch, which should be countersigned by the governmental agencyrepresentative and the teacher-mentor, who is required to periodically visit the students and guide them.